- #1

- 16

- 0

## Main Question or Discussion Point

Why is Z mod 2 x Z mod 3 isomorphic to Z mod 6 but Z mod 2 x Z mod 2 not isomorphic to Z mod 4?

- Thread starter TaylorWatts
- Start date

- #1

- 16

- 0

Why is Z mod 2 x Z mod 3 isomorphic to Z mod 6 but Z mod 2 x Z mod 2 not isomorphic to Z mod 4?

- #2

matt grime

Science Advisor

Homework Helper

- 9,395

- 3

This is either a consequence of the structure theorem for abelian groups, or an explanation of that theorem, depending on how you look at it.

We could look a bit deeper: suppose that G and H are cyclic, when is GxH cyclic? Well, suppose that we claim (g,h) is a cyclic generator of GxH. Well, g must be a generator of G with order p, say, and h a generator of H with order q, and (g,h) must have order pq. If I raise (g,h) to the power p, then it is (1,k) for some k in H, and in order for (g,h) to have order pq k must have order q, i.e. also be a generator for H.

Pulling out the important thing: H must have an element h of order so that h^p still has order q. But this is if and only if p is coprime to q (this is an elementary fact you may have learnt already).

- Last Post

- Replies
- 4

- Views
- 5K

- Last Post

- Replies
- 2

- Views
- 2K

- Last Post

- Replies
- 9

- Views
- 8K

- Replies
- 2

- Views
- 6K

- Last Post

- Replies
- 5

- Views
- 2K

- Last Post

- Replies
- 2

- Views
- 649

- Replies
- 3

- Views
- 3K

- Replies
- 1

- Views
- 2K