MHB It is an algebraically dependent set over F

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Set
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $E/F$ be a field extension, $S\subseteq E$ and let $t\in E$ be algebraic over $F(S)$.

I want to show that there are distinct $s_1, \ldots , s_r\in S$, different from $t$, such that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$.
I have done the following:
We have that $t\in E$ is algebraic over $F(S)$, i.e., there is a non-zero $f\in F(S)[x]$ such that $f(t)=0$, right? (Wondering)

To show that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$, we have to show that there is a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ such that $g(s_1, \ldots , s_r, t)=0$, right? How can we use the polynomial $f$ for that? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $E/F$ be a field extension, $S\subseteq E$ and let $t\in E$ be algebraic over $F(S)$.

I want to show that there are distinct $s_1, \ldots , s_r\in S$, different from $t$, such that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$.
I have done the following:
We have that $t\in E$ is algebraic over $F(S)$, i.e., there is a non-zero $f\in F(S)[x]$ such that $f(t)=0$, right? (Wondering)

To show that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$, we have to show that there is a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ such that $g(s_1, \ldots , s_r, t)=0$, right? How can we use the polynomial $f$ for that? (Wondering)
The coefficients of $f$ are elements of $F(S)$. Thus each coefficient of $f$ looks like a ratio of two polynomials over $F$ evaluated on some members of $S$. Thus there are $s_1, \ldots, s_r\in S$ such that each coefficient of $f$ is of the form $p(s_1, \ldots, s_r)/q(s_1, \ldots, s_r)$, where $p$ and $q$ are polynomials over $F$. Now if you "rationalize" $f$ you will get your required polynomial showing $s_1, \dots, s_r, t$ are algebraically dependent over $F$.
 
caffeinemachine said:
The coefficients of $f$ are elements of $F(S)$. Thus each coefficient of $f$ looks like a ratio of two polynomials over $F$ evaluated on some members of $S$. Thus there are $s_1, \ldots, s_r\in S$ such that each coefficient of $f$ is of the form $p(s_1, \ldots, s_r)/q(s_1, \ldots, s_r)$, where $p$ and $q$ are polynomials over $F$. Now if you "rationalize" $f$ you will get your required polynomial showing $s_1, \dots, s_r, t$ are algebraically dependent over $F$.
We have that $t\in E$ is algebraic over $F(S)$, so for a positive integer $r$ there are elements $s_1, \ldots , s_r\in S$ and a non-zero polynomial $f\in F(s_1, \ldots , s_r)[x]$ such that $f(t)=0$.

Since $f\in F(s_1, \ldots , s_r)[x]$ the polynomial is of the form $$f=\frac{p_0(s_1, \ldots , s_0)}{q_0(s_1, \ldots , s_r)}+\frac{p_1(s_1, \ldots , s_r)}{q_1(s_1, \ldots , s_r)}x+\ldots +\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}x^n$$ with $p,q$ polynomials in $F$ and with $\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}\neq 0$.

Let $h$ be the lcm of the $q_i$'s. It holds that $h\neq 0$.

When we multiply $f$ by $h$, the coefficients of $f$ are now polynomials. So,
$$\tilde{f}(x)=f\cdot h=h_0(s_1, \ldots , s_r)+h_1(s_1, \ldots , s_r)x+\ldots +h_n(s_1, \ldots , s_r)x^n$$
Let $g(s_1, \ldots , s_r, x):=\tilde{f}(x)$. Since $\tilde{f}$ is non-zero, it follows that $g$ is non-zero.

So, we have a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ with $g(s_1, \ldots , s_r, t)=\tilde{f}(t)=0$. This is the definition that the set $\{s_1, \ldots , s_r, t\}$ is algebracailly dependent.

Is everything correct? (Wondering)
 
mathmari said:
We have that $t\in E$ is algebraic over $F(S)$, so for a positive integer $r$ there are elements $s_1, \ldots , s_r\in S$ and a non-zero polynomial $f\in F(s_1, \ldots , s_r)[x]$ such that $f(t)=0$.

Since $f\in F(s_1, \ldots , s_r)[x]$ the polynomial is of the form $$f=\frac{p_0(s_1, \ldots , s_0)}{q_0(s_1, \ldots , s_r)}+\frac{p_1(s_1, \ldots , s_r)}{q_1(s_1, \ldots , s_r)}x+\ldots +\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}x^n$$ with $p,q$ polynomials in $F$ and with $\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}\neq 0$.

Let $h$ be the lcm of the $q_i$'s. It holds that $h\neq 0$.

When we multiply $f$ by $h$, the coefficients of $f$ are now polynomials. So,
$$\tilde{f}(x)=f\cdot h=h_0(s_1, \ldots , s_r)+h_1(s_1, \ldots , s_r)x+\ldots +h_n(s_1, \ldots , s_r)x^n$$
Let $g(s_1, \ldots , s_r, x):=\tilde{f}(x)$. Since $\tilde{f}$ is non-zero, it follows that $g$ is non-zero.

So, we have a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ with $g(s_1, \ldots , s_r, t)=\tilde{f}(t)=0$. This is the definition that the set $\{s_1, \ldots , s_r, t\}$ is algebracailly dependent.

Is everything correct? (Wondering)
Yes.
 
caffeinemachine said:
Yes.

Thank you so much! (Smile)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top