MHB It is an algebraically dependent set over F

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Set
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $E/F$ be a field extension, $S\subseteq E$ and let $t\in E$ be algebraic over $F(S)$.

I want to show that there are distinct $s_1, \ldots , s_r\in S$, different from $t$, such that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$.
I have done the following:
We have that $t\in E$ is algebraic over $F(S)$, i.e., there is a non-zero $f\in F(S)[x]$ such that $f(t)=0$, right? (Wondering)

To show that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$, we have to show that there is a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ such that $g(s_1, \ldots , s_r, t)=0$, right? How can we use the polynomial $f$ for that? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $E/F$ be a field extension, $S\subseteq E$ and let $t\in E$ be algebraic over $F(S)$.

I want to show that there are distinct $s_1, \ldots , s_r\in S$, different from $t$, such that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$.
I have done the following:
We have that $t\in E$ is algebraic over $F(S)$, i.e., there is a non-zero $f\in F(S)[x]$ such that $f(t)=0$, right? (Wondering)

To show that $\{s_1, \ldots , s_r, t\}$ is an algebraically dependent set over $F$, we have to show that there is a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ such that $g(s_1, \ldots , s_r, t)=0$, right? How can we use the polynomial $f$ for that? (Wondering)
The coefficients of $f$ are elements of $F(S)$. Thus each coefficient of $f$ looks like a ratio of two polynomials over $F$ evaluated on some members of $S$. Thus there are $s_1, \ldots, s_r\in S$ such that each coefficient of $f$ is of the form $p(s_1, \ldots, s_r)/q(s_1, \ldots, s_r)$, where $p$ and $q$ are polynomials over $F$. Now if you "rationalize" $f$ you will get your required polynomial showing $s_1, \dots, s_r, t$ are algebraically dependent over $F$.
 
caffeinemachine said:
The coefficients of $f$ are elements of $F(S)$. Thus each coefficient of $f$ looks like a ratio of two polynomials over $F$ evaluated on some members of $S$. Thus there are $s_1, \ldots, s_r\in S$ such that each coefficient of $f$ is of the form $p(s_1, \ldots, s_r)/q(s_1, \ldots, s_r)$, where $p$ and $q$ are polynomials over $F$. Now if you "rationalize" $f$ you will get your required polynomial showing $s_1, \dots, s_r, t$ are algebraically dependent over $F$.
We have that $t\in E$ is algebraic over $F(S)$, so for a positive integer $r$ there are elements $s_1, \ldots , s_r\in S$ and a non-zero polynomial $f\in F(s_1, \ldots , s_r)[x]$ such that $f(t)=0$.

Since $f\in F(s_1, \ldots , s_r)[x]$ the polynomial is of the form $$f=\frac{p_0(s_1, \ldots , s_0)}{q_0(s_1, \ldots , s_r)}+\frac{p_1(s_1, \ldots , s_r)}{q_1(s_1, \ldots , s_r)}x+\ldots +\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}x^n$$ with $p,q$ polynomials in $F$ and with $\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}\neq 0$.

Let $h$ be the lcm of the $q_i$'s. It holds that $h\neq 0$.

When we multiply $f$ by $h$, the coefficients of $f$ are now polynomials. So,
$$\tilde{f}(x)=f\cdot h=h_0(s_1, \ldots , s_r)+h_1(s_1, \ldots , s_r)x+\ldots +h_n(s_1, \ldots , s_r)x^n$$
Let $g(s_1, \ldots , s_r, x):=\tilde{f}(x)$. Since $\tilde{f}$ is non-zero, it follows that $g$ is non-zero.

So, we have a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ with $g(s_1, \ldots , s_r, t)=\tilde{f}(t)=0$. This is the definition that the set $\{s_1, \ldots , s_r, t\}$ is algebracailly dependent.

Is everything correct? (Wondering)
 
mathmari said:
We have that $t\in E$ is algebraic over $F(S)$, so for a positive integer $r$ there are elements $s_1, \ldots , s_r\in S$ and a non-zero polynomial $f\in F(s_1, \ldots , s_r)[x]$ such that $f(t)=0$.

Since $f\in F(s_1, \ldots , s_r)[x]$ the polynomial is of the form $$f=\frac{p_0(s_1, \ldots , s_0)}{q_0(s_1, \ldots , s_r)}+\frac{p_1(s_1, \ldots , s_r)}{q_1(s_1, \ldots , s_r)}x+\ldots +\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}x^n$$ with $p,q$ polynomials in $F$ and with $\frac{p_n(s_1, \ldots , s_r)}{q_n(s_1, \ldots , s_r)}\neq 0$.

Let $h$ be the lcm of the $q_i$'s. It holds that $h\neq 0$.

When we multiply $f$ by $h$, the coefficients of $f$ are now polynomials. So,
$$\tilde{f}(x)=f\cdot h=h_0(s_1, \ldots , s_r)+h_1(s_1, \ldots , s_r)x+\ldots +h_n(s_1, \ldots , s_r)x^n$$
Let $g(s_1, \ldots , s_r, x):=\tilde{f}(x)$. Since $\tilde{f}$ is non-zero, it follows that $g$ is non-zero.

So, we have a non-zero polynomial $g\in F[x_1, \ldots , x_r, y]$ with $g(s_1, \ldots , s_r, t)=\tilde{f}(t)=0$. This is the definition that the set $\{s_1, \ldots , s_r, t\}$ is algebracailly dependent.

Is everything correct? (Wondering)
Yes.
 
caffeinemachine said:
Yes.

Thank you so much! (Smile)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top