Jamal's Q via email solving a system

  • Context: MHB 
  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Email System
Click For Summary
SUMMARY

The discussion focuses on solving a system of equations using Gaussian Elimination with Partial Pivoting. The augmented matrix is represented as A, and through a series of row operations, the system is transformed into an upper triangular form. The final solution to the system is derived as x = [2, -1, 0, 3], confirming the accuracy of the solution by substituting back into the original augmented matrix.

PREREQUISITES
  • Understanding of Gaussian Elimination
  • Familiarity with matrix operations
  • Knowledge of augmented matrices
  • Experience with back substitution techniques
NEXT STEPS
  • Study advanced techniques in Gaussian Elimination, including complete pivoting
  • Explore the application of matrix theory in solving linear systems
  • Learn about numerical stability in matrix operations
  • Investigate software tools for matrix computations, such as MATLAB or NumPy
USEFUL FOR

Students and professionals in mathematics, engineering, and computer science who are involved in linear algebra and numerical methods for solving systems of equations.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
We can write the system in an augmented matrix as $\displaystyle \begin{align*} A = \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 & \phantom{-}6 \\ 2 & \phantom{-}3 & \phantom{-}2 & -5 &-14 \\ 0 & \phantom{-}5 & \phantom{-}2 & \phantom{-}2 &\phantom{-}1 \\ 0 & \phantom{-}0 & \phantom{-}2 & -3 & -9 \end{matrix} \right] \end{align*}$. If we apply Gaussian Elimination with Partial Pivoting, when the system is upper-triangularised, the right hand column becomes the elements of matrix $\displaystyle \begin{align*} \mathbf{g} \end{align*}$.

First we will apply R2 - R1 to R1 (no pivoting needed as the elements in the first column have the same magnitude)

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 & \phantom{-}5 & \phantom{-}2 & \phantom{-}2 &\phantom{-}1 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9 \end{matrix} \right] \end{align*}$

Again pivoting is not needed as the elements on or below the main diagonal in column 2 are the same magnitude, so we will apply R3 - R2 to R2 giving

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 & \phantom{-}0 & -1 & \phantom{-}7 &\phantom{-}21 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9 \end{matrix} \right] \end{align*}$

If we look in column 3, we see that the element on or below the main diagonal with the highest magnitude is in Row 4, so we must switch rows 3 and 4, giving

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9\\ 0 & \phantom{-}0 & -1 & \phantom{-}7 &\phantom{-}21 \end{matrix} \right] \end{align*}$

and finally when we apply R4 + (1/2)R3 to R4 we get

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9\\ 0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}\frac{11}{2} & \phantom{-}\frac{33}{2} \end{matrix} \right] \end{align*}$So we can read off that $\displaystyle \begin{align*} \mathbf{g} = \left[ \begin{matrix} \phantom{-}6 \\ -20 \\ -9 \\ \phantom{-}\frac{33}{2} \end{matrix} \right] \end{align*}$ and we can solve for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ in the system through back substitution:

$\displaystyle \begin{align*} \frac{11}{2} \, x_4 &= \frac{33}{2} \\ x_4 &= 3 \\ \\ 2\,x_3 - 3\,x_4 &= -9 \\ 2\,x_3 - 9 &= -9 \\ 2\,x_3 &= 0 \\ x_3 &= 0 \\ \\ 5\,x_2 + 3\,x_3 - 5\,x_4 &= -20 \\ 5\,x_2 + 0 - 15 &= -20 \\ 5\,x_2 &= -5 \\ x_2 &= -1 \\ \\ 2\,x_1 - 2\,x_2 - x_3 &= 6 \\ 2\,x_1 + 2 - 0 &= 6 \\ 2\,x_1 &= 4 \\ x_1 &= 2 \end{align*}$

Thus the solution to the system is $\displaystyle \begin{align*} \mathbf{x} = \left[ \begin{matrix} \phantom{-}2 \\ -1 \\ \phantom{-}0 \\ \phantom{-}3 \end{matrix} \right] \end{align*}$.
 
Physics news on Phys.org
As always, it's a good idea to check that the solution shown above actually works in the augmented matrix at the beginning of the post.
 

Similar threads

Replies
1
Views
4K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
3
Views
2K
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 7 ·
Replies
7
Views
3K