MHB Jamal's Q via email solving a system

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Email System
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
We can write the system in an augmented matrix as $\displaystyle \begin{align*} A = \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 & \phantom{-}6 \\ 2 & \phantom{-}3 & \phantom{-}2 & -5 &-14 \\ 0 & \phantom{-}5 & \phantom{-}2 & \phantom{-}2 &\phantom{-}1 \\ 0 & \phantom{-}0 & \phantom{-}2 & -3 & -9 \end{matrix} \right] \end{align*}$. If we apply Gaussian Elimination with Partial Pivoting, when the system is upper-triangularised, the right hand column becomes the elements of matrix $\displaystyle \begin{align*} \mathbf{g} \end{align*}$.

First we will apply R2 - R1 to R1 (no pivoting needed as the elements in the first column have the same magnitude)

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 & \phantom{-}5 & \phantom{-}2 & \phantom{-}2 &\phantom{-}1 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9 \end{matrix} \right] \end{align*}$

Again pivoting is not needed as the elements on or below the main diagonal in column 2 are the same magnitude, so we will apply R3 - R2 to R2 giving

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 & \phantom{-}0 & -1 & \phantom{-}7 &\phantom{-}21 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9 \end{matrix} \right] \end{align*}$

If we look in column 3, we see that the element on or below the main diagonal with the highest magnitude is in Row 4, so we must switch rows 3 and 4, giving

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9\\ 0 & \phantom{-}0 & -1 & \phantom{-}7 &\phantom{-}21 \end{matrix} \right] \end{align*}$

and finally when we apply R4 + (1/2)R3 to R4 we get

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9\\ 0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}\frac{11}{2} & \phantom{-}\frac{33}{2} \end{matrix} \right] \end{align*}$So we can read off that $\displaystyle \begin{align*} \mathbf{g} = \left[ \begin{matrix} \phantom{-}6 \\ -20 \\ -9 \\ \phantom{-}\frac{33}{2} \end{matrix} \right] \end{align*}$ and we can solve for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ in the system through back substitution:

$\displaystyle \begin{align*} \frac{11}{2} \, x_4 &= \frac{33}{2} \\ x_4 &= 3 \\ \\ 2\,x_3 - 3\,x_4 &= -9 \\ 2\,x_3 - 9 &= -9 \\ 2\,x_3 &= 0 \\ x_3 &= 0 \\ \\ 5\,x_2 + 3\,x_3 - 5\,x_4 &= -20 \\ 5\,x_2 + 0 - 15 &= -20 \\ 5\,x_2 &= -5 \\ x_2 &= -1 \\ \\ 2\,x_1 - 2\,x_2 - x_3 &= 6 \\ 2\,x_1 + 2 - 0 &= 6 \\ 2\,x_1 &= 4 \\ x_1 &= 2 \end{align*}$

Thus the solution to the system is $\displaystyle \begin{align*} \mathbf{x} = \left[ \begin{matrix} \phantom{-}2 \\ -1 \\ \phantom{-}0 \\ \phantom{-}3 \end{matrix} \right] \end{align*}$.
 
Mathematics news on Phys.org
As always, it's a good idea to check that the solution shown above actually works in the augmented matrix at the beginning of the post.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top