MHB Jamal's Q via email solving a system

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Email System
Click For Summary
The discussion outlines the process of solving a system of equations using Gaussian elimination with partial pivoting, represented in an augmented matrix. The elimination steps are detailed, showing how to transform the matrix into an upper triangular form while performing row operations. The final augmented matrix allows for back substitution to find the values of the variables. The solution to the system is found to be x = [2, -1, 0, 3]. Verifying the solution against the original matrix confirms its accuracy.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
We can write the system in an augmented matrix as $\displaystyle \begin{align*} A = \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 & \phantom{-}6 \\ 2 & \phantom{-}3 & \phantom{-}2 & -5 &-14 \\ 0 & \phantom{-}5 & \phantom{-}2 & \phantom{-}2 &\phantom{-}1 \\ 0 & \phantom{-}0 & \phantom{-}2 & -3 & -9 \end{matrix} \right] \end{align*}$. If we apply Gaussian Elimination with Partial Pivoting, when the system is upper-triangularised, the right hand column becomes the elements of matrix $\displaystyle \begin{align*} \mathbf{g} \end{align*}$.

First we will apply R2 - R1 to R1 (no pivoting needed as the elements in the first column have the same magnitude)

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 & \phantom{-}5 & \phantom{-}2 & \phantom{-}2 &\phantom{-}1 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9 \end{matrix} \right] \end{align*}$

Again pivoting is not needed as the elements on or below the main diagonal in column 2 are the same magnitude, so we will apply R3 - R2 to R2 giving

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 & \phantom{-}0 & -1 & \phantom{-}7 &\phantom{-}21 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9 \end{matrix} \right] \end{align*}$

If we look in column 3, we see that the element on or below the main diagonal with the highest magnitude is in Row 4, so we must switch rows 3 and 4, giving

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9\\ 0 & \phantom{-}0 & -1 & \phantom{-}7 &\phantom{-}21 \end{matrix} \right] \end{align*}$

and finally when we apply R4 + (1/2)R3 to R4 we get

$\displaystyle \begin{align*} \left[ \begin{matrix} 2 & -2 & -1 & \phantom{-}0 &\phantom{-}6 \\ 0 & \phantom{-}5 & \phantom{-}3 & -5 &-20 \\ 0 &\phantom{-}0 & \phantom{-}2 & -3 &-9\\ 0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}\frac{11}{2} & \phantom{-}\frac{33}{2} \end{matrix} \right] \end{align*}$So we can read off that $\displaystyle \begin{align*} \mathbf{g} = \left[ \begin{matrix} \phantom{-}6 \\ -20 \\ -9 \\ \phantom{-}\frac{33}{2} \end{matrix} \right] \end{align*}$ and we can solve for $\displaystyle \begin{align*} \mathbf{x} \end{align*}$ in the system through back substitution:

$\displaystyle \begin{align*} \frac{11}{2} \, x_4 &= \frac{33}{2} \\ x_4 &= 3 \\ \\ 2\,x_3 - 3\,x_4 &= -9 \\ 2\,x_3 - 9 &= -9 \\ 2\,x_3 &= 0 \\ x_3 &= 0 \\ \\ 5\,x_2 + 3\,x_3 - 5\,x_4 &= -20 \\ 5\,x_2 + 0 - 15 &= -20 \\ 5\,x_2 &= -5 \\ x_2 &= -1 \\ \\ 2\,x_1 - 2\,x_2 - x_3 &= 6 \\ 2\,x_1 + 2 - 0 &= 6 \\ 2\,x_1 &= 4 \\ x_1 &= 2 \end{align*}$

Thus the solution to the system is $\displaystyle \begin{align*} \mathbf{x} = \left[ \begin{matrix} \phantom{-}2 \\ -1 \\ \phantom{-}0 \\ \phantom{-}3 \end{matrix} \right] \end{align*}$.
 
Mathematics news on Phys.org
As always, it's a good idea to check that the solution shown above actually works in the augmented matrix at the beginning of the post.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
1
Views
4K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 6 ·
Replies
6
Views
431
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
11K