MHB James' question about Normal Distribution

Click For Summary
SUMMARY

The discussion centers on the application of the normal distribution with specific parameters, where the mean (μ) is 5 and the standard deviation (σ) is 2. The calculations for the probabilities are derived using the Z-score formula, Z = (X - μ) / σ. For the given values, it is established that a = -1, b = 1.5, and c = -0.5, confirming the relationships between the probabilities and their corresponding Z-scores. The derivation method suggested by a participant emphasizes clarity in the transformation from X to Z.

PREREQUISITES
  • Understanding of normal distribution concepts
  • Familiarity with Z-score calculations
  • Knowledge of mean (μ) and standard deviation (σ) in statistics
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study the Central Limit Theorem and its implications for normal distribution
  • Learn about the properties of the standard normal distribution
  • Explore applications of normal distribution in real-world scenarios
  • Investigate statistical software tools for calculating probabilities (e.g., R, Python's SciPy library)
USEFUL FOR

Statisticians, data analysts, students in statistics courses, and anyone involved in quantitative research will benefit from this discussion on normal distribution and Z-score calculations.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
normal distribution.jpg

(a) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X < 3 \right) = \textrm{Pr}\,\left( Z < a \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 3 \end{align*}$ and $\displaystyle \begin{align*} z = a \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ a &= \frac{3 - 5}{2} \\ a &= \frac{-2}{\phantom{-}2} \\ a &= -1 \end{align*}$(b) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 8 \right) = \textrm{Pr}\,\left( Z > b \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 8 \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ b &= \frac{8 - 5}{2} \\ b &= \frac{3}{2} \\ b &= 1.5 \end{align*}$(c) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z < c \right) \end{align*}$, so by symmetry, $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z > -c \right) \end{align*}$, and thus if $\displaystyle \begin{align*} x = 6 \end{align*}$ then

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ -c &= \frac{6 - 5}{2} \\ -c &= \frac{1}{2} \\ c &= -\frac{1}{2} \end{align*}$
 
Last edited by a moderator:
Mathematics news on Phys.org
Prove It said:
View attachment 309785
(a) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X < 3 \right) = \textrm{Pr}\,\left( Z < a \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 3 \end{align*}$ and $\displaystyle \begin{align*} z = a \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ a &= \frac{3 - 5}{2} \\ a &= \frac{-2}{\phantom{-}2} \\ a &= -1 \end{align*}$(b) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 8 \right) = \textrm{Pr}\,\left( Z > b \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 8 \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ b &= \frac{8 - 5}{2} \\ b &= \frac{3}{2} \\ b &= 1.5 \end{align*}$(c) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z < c \right) \end{align*}$, so by symmetry, $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z > -c \right) \end{align*}$, and thus if $\displaystyle \begin{align*} x = 6 \end{align*}$ then

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ -c &= \frac{6 - 5}{2} \\ -c &= \frac{1}{2} \\ c &= -\frac{1}{2} \end{align*}$
Your answers look fine but I wouldn't have done things as you did.
You're given that ##\mu = 5## and ##\sigma = 2##, so ##Z = \frac{X - \mu}\sigma##. Substituting for the given parameters, we have ##Z = \frac{X - 5}2 \Rightarrow X = 2Z + 5##.

For part a, ##Pr(X < 3) = Pr(2Z + 5 < 3) = Pr(2z < -2) = Pr(Z < -1)##, so ##a = -1##, same answer that you gave, but probably cleaner in its derivation. The other two parts are done similarly.
 
  • Like
Likes Greg Bernhardt and Euge

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K