MHB James' question about Normal Distribution

AI Thread Summary
The discussion focuses on calculating probabilities related to a normal distribution with a mean (μ) of 5 and a standard deviation (σ) of 2. For part (a), it confirms that Pr(X < 3) corresponds to Pr(Z < -1), resulting in a value of a = -1. In part (b), it finds that Pr(X > 8) translates to Pr(Z > 1.5), leading to b = 1.5. Lastly, part (c) establishes that Pr(X > 6) equals Pr(Z < -0.5), giving c = -0.5. The calculations are validated through a clear derivation process, emphasizing the relationship between X and Z.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
normal distribution.jpg

(a) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X < 3 \right) = \textrm{Pr}\,\left( Z < a \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 3 \end{align*}$ and $\displaystyle \begin{align*} z = a \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ a &= \frac{3 - 5}{2} \\ a &= \frac{-2}{\phantom{-}2} \\ a &= -1 \end{align*}$(b) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 8 \right) = \textrm{Pr}\,\left( Z > b \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 8 \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ b &= \frac{8 - 5}{2} \\ b &= \frac{3}{2} \\ b &= 1.5 \end{align*}$(c) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z < c \right) \end{align*}$, so by symmetry, $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z > -c \right) \end{align*}$, and thus if $\displaystyle \begin{align*} x = 6 \end{align*}$ then

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ -c &= \frac{6 - 5}{2} \\ -c &= \frac{1}{2} \\ c &= -\frac{1}{2} \end{align*}$
 
Last edited by a moderator:
Mathematics news on Phys.org
Prove It said:
View attachment 309785
(a) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X < 3 \right) = \textrm{Pr}\,\left( Z < a \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 3 \end{align*}$ and $\displaystyle \begin{align*} z = a \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ a &= \frac{3 - 5}{2} \\ a &= \frac{-2}{\phantom{-}2} \\ a &= -1 \end{align*}$(b) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 8 \right) = \textrm{Pr}\,\left( Z > b \right) \end{align*}$, so if $\displaystyle \begin{align*} x = 8 \end{align*}$ then we have

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ b &= \frac{8 - 5}{2} \\ b &= \frac{3}{2} \\ b &= 1.5 \end{align*}$(c) We are told $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z < c \right) \end{align*}$, so by symmetry, $\displaystyle \begin{align*} \textrm{Pr}\,\left( X > 6 \right) = \textrm{Pr}\,\left( Z > -c \right) \end{align*}$, and thus if $\displaystyle \begin{align*} x = 6 \end{align*}$ then

$\displaystyle \begin{align*} z &= \frac{x - \mu}{\sigma} \\ -c &= \frac{6 - 5}{2} \\ -c &= \frac{1}{2} \\ c &= -\frac{1}{2} \end{align*}$
Your answers look fine but I wouldn't have done things as you did.
You're given that ##\mu = 5## and ##\sigma = 2##, so ##Z = \frac{X - \mu}\sigma##. Substituting for the given parameters, we have ##Z = \frac{X - 5}2 \Rightarrow X = 2Z + 5##.

For part a, ##Pr(X < 3) = Pr(2Z + 5 < 3) = Pr(2z < -2) = Pr(Z < -1)##, so ##a = -1##, same answer that you gave, but probably cleaner in its derivation. The other two parts are done similarly.
 
  • Like
Likes Greg Bernhardt and Euge
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
1
Views
10K
Replies
2
Views
11K
Replies
1
Views
11K
Replies
2
Views
6K
Replies
4
Views
11K
Replies
2
Views
5K
Replies
1
Views
5K
Replies
1
Views
10K
Replies
4
Views
11K
Back
Top