Jamie's question from Yahoo Answers regarding centroids

  • Context: MHB 
  • Thread starter Thread starter Chris L T521
  • Start date Start date
  • Tags Tags
    Centroids
Click For Summary
SUMMARY

The centroid of the region defined by the curves \(x+y=2\) and \(x=y^2\) is calculated using multivariable calculus techniques. The area of the region \(R\) is determined to be \(\frac{9}{2}\), while the integrals for \(\iint\limits_R x\,dA\) and \(\iint\limits_R y\,dA\) yield \(\frac{36}{5}\) and \(-\frac{9}{4}\) respectively. Consequently, the coordinates of the centroid are \((\bar{x},\bar{y})=\left(\frac{8}{5},-\frac{1}{2}\right)\). This calculation is essential for understanding the geometric properties of the defined region.

PREREQUISITES
  • Multivariable calculus
  • Understanding of double integrals
  • Familiarity with bounding functions in calculus
  • Knowledge of TikZ for rendering figures in LaTeX
NEXT STEPS
  • Study the application of double integrals in finding centroids of various regions
  • Learn how to use TikZ for creating complex figures in LaTeX
  • Explore the properties of type I and type II regions in multivariable calculus
  • Investigate further examples of centroid calculations in different geometric shapes
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, geometry, and LaTeX typesetting. This discussion is beneficial for anyone looking to deepen their understanding of centroid calculations and graphical representations in mathematical contexts.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question.

Centroid of x+y=2 x=y^2?

Here is a link to the question:

Centroid of x+y=2 x=y^2? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hi Jamie,

The region that we're supposed to find the centroid for can be found in the figure below.
mhb_centroid.png
Assuming that you know multivariable calculus, one defines the centroid as $(\bar{x},\bar{y})$ where
\[\bar{x}= \frac{\displaystyle\iint\limits_R x\,dA}{\displaystyle\iint\limits_R \,dA}=\frac{1}{\text{Area of $R$}}\iint\limits_R x\,dA\qquad\text{ and }\qquad \bar{y}= \frac{\displaystyle\iint\limits_R y\,dA}{\displaystyle\iint\limits_R \,dA}=\frac{1}{\text{Area of $R$}}\iint\limits_R y\,dA\]
Due to the region $R$ we have, it would be best to treat it as a type II region and treat the bounding functions as functions of the form $x=f(y)$ (if we treated the region as type I, then we'd have more than one integral to work with for each of $\bar{x}$ and $\bar{y}$). With that said, the two bounding functions are $x=2-y$ and $x=y^2$.

Thus, we see that
\[\begin{aligned} \iint\limits_R \,dA &= \int_{-2}^1\int_{y^2}^{2-y}\,dx\,dy \\ &= \int_{-2}^1 2-y-y^2\,dy \\ &= \left.\left[ 2y-\frac{1}{2}y^2-\frac{1}{3}y^3\right]\right|_{-2}^1\\ &= \left(2-\frac{1}{2}-\frac{1}{3}\right) - \left(-4 -2 + \frac{8}{3}\right)\\ &= \frac{9}{2}\end{aligned}\]

\[\begin{aligned} \iint\limits_R x\,dA &= \int_{-2}^1\int_{y^2}^{2-y} x\,dx\,dy\\ &= \frac{1}{2}\int_{-2}^1 \left.\left[ x^2\right]\right|_{y^2}^{2-y}\,dy\\ &= \frac{1}{2}\int_{-2}^1 4-4y+y^2-y^4\,dy \\ &= \frac{1}{2}\left.\left[ 4y - 2y^2+\frac{1}{3}y^3- \frac{1}{5}y^5\right]\right|_{-2}^1\\ &= \frac{1}{2}\left[\left( 4-2+\frac{1}{3}-\frac{1}{5}\right) - \left( -8-8-\frac{8}{3} +\frac{32}{5}\right)\right]\\ &= \frac{36}{5}\end{aligned}\]

\[\begin{aligned} \iint\limits_R y\,dA &= \int_{-2}^1\int_{y^2}^{2-y} y\,dx\,dy\\ &= \int_{-2}^1 y(2-y-y^2)\,dy\\ &= \int_{-2}^1 2y-y^2-y^3\,dy \\ &= \left.\left[y^2-\frac{1}{3}y^3-\frac{1}{4}y^4\right]\right|_{-2}^1\\ &= \left[\left(1-\frac{1}{3}-\frac{1}{4}\right) - \left(4+\frac{8}{3} - 4\right)\right]\\ &= -\frac{9}{4}\end{aligned}\]

Therefore,

\[\bar{x}= \frac{\displaystyle\iint\limits_R x\,dA}{\displaystyle\iint\limits_R \,dA}= \frac{\dfrac{36}{5}}{\dfrac{9}{2}} = \frac{8}{5}\]

and

\[\bar{y}= \frac{\displaystyle\iint\limits_R y\,dA}{\displaystyle\iint\limits_R \,dA}= \frac{-\dfrac{9}{4}}{\dfrac{9}{2}} = -\frac{1}{2}\]

Thus, the centroid of this region is $(\bar{x},\bar{y})=\left(\dfrac{8}{5},-\dfrac{1}{2}\right)$ (as seen in the figure below).
mhb_centroid2.png
I hope this made sense!
 
For those of you who are interested, here's the TikZ codes for the two figures (in two separate posts because apparently I've exceeded the character limit for a single post).

mhb_centroid.png

Code:
\begin{figure}[!ht]
\centering
\begin{tikzpicture}[scale=.95]
   \draw[very thin,color=gray!35] (-5.5,-3.5) grid (5.5,3.5);
   \draw[<->] (-5.5,0) -- (5.5,0) node[right]{$x$};
   \draw[<->] (0,-4) -- (0,4) node[above]{$y$};
   \foreach\x in {-5,-4,-3,-2,-1,1,2,3,4,5}{
   \draw (\x,.1) -- (\x,-.1) node[below]{$\x$};
      }
   \foreach\x in {-3,-2,-1,1,2,3}{
   \draw (-.1,\x) -- (.1,\x) node[right]{$\x$};
     }
   \draw[<->,blue,thick](5.5,-3.5) -- (-1.5,3.5) node[above,left]{$x+y=2$};
   \fill.25] (1,1) -- (4,-2) -- plot[domain=0:4,smooth,samples=1500](\x,{-sqrt(\x)}) 
   -- plot[domain=0:1,smooth,samples=1500](\x,{sqrt(\x)}) --  cycle;
   \draw (1.5,-0.5) node{$R$};
   \draw[red,thick] plot[domain=0:5.5,smooth,samples=1500] (\x, {-sqrt(\x)});
   \draw[red,thick] plot[domain=0:5.5,smooth,samples=1500] (\x, {sqrt(\x)}) node[above]{$x=y^2$};
   \fill (1,1) circle (2pt) node[right=.2cm]{$(1,1)$};
   \fill (4,-2) circle (2pt) node[below=.25cm,left]{$(4,-2)$};
\end{tikzpicture}
\caption{The region $R$ bounded by the curves $x+y=2$ and $x=y^2$.}
\end{figure}
 
mhb_centroid2.png

Code:
\begin{figure}[!ht]
\centering
\begin{tikzpicture}[scale=.95]
   \draw[very thin,color=gray!35] (-5.5,-3.5) grid (5.5,3.5);
   \draw[<->] (-5.5,0) -- (5.5,0) node[right]{$x$};
   \draw[<->] (0,-4) -- (0,4) node[above]{$y$};
   \foreach\x in {-5,-4,-3,-2,-1,1,2,3,4,5}{
   \draw (\x,.1) -- (\x,-.1) node[below]{$\x$};
     }
   \foreach\x in {-3,-2,-1,1,2,3}{
   \draw (-.1,\x) -- (.1,\x) node[right]{$\x$};
     }
   \draw[<->,blue,thick](5.5,-3.5) -- (-1.5,3.5) node[above,left]{$x+y=2$};
   \fill.25] (1,1) -- (4,-2) -- plot[domain=0:4,smooth,samples=1500](\x,{-sqrt(\x)}) 
   -- plot[domain=0:1,smooth,samples=1500](\x,{sqrt(\x)}) --  cycle;
   \draw (1.5,-0.5) node{$R$};
   \draw[red,thick] plot[domain=0:5.5,smooth,samples=1500] (\x, {-sqrt(\x)});
   \draw[red,thick] plot[domain=0:5.5,smooth,samples=1500] (\x, {sqrt(\x)}) node[above]{$x=y^2$};
   \fill (1,1) circle (2pt) node[right=.2cm]{$(1,1)$};
   \fill (4,-2) circle (2pt) node[below=.25cm,left]{$(4,-2)$};
   \fill[blue] (1.6,-.5) circle (2pt);
   \draw[blue] (-2.5,-2)  node{$(\bar{x},\bar{y})=\left(\frac{8}{5},-\frac{1}{2}\right)$};
   \draw[->,color=blue] (-1,-2) to[out=0,in=270] (1.6,-.6);
\end{tikzpicture}
\caption{The centroid of the region $R$ bounded by the curves $x+y=2$ and $x=y^2$.}
\end{figure}
 
That is really great , thanks for sharing the code . By the way , do I need a program to render the code or I can do it online ?

PS : I need to draw some contours for the lessons I am about to write .
 
ZaidAlyafey said:
That is really great , thanks for sharing the code . By the way , do I need a program to render the code or I can do it online ?

PS : I need to draw some contours for the lessons I am about to write .

If you have LaTeX installed on your computer, then you should have no problem compiling it. You'll just need to include \usepackage{tikz} in the preamble of your document.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
14K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
27
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K