MHB Jamie's question from Yahoo Answers regarding centroids

  • Thread starter Thread starter Chris L T521
  • Start date Start date
  • Tags Tags
    Centroids
AI Thread Summary
The centroid of the region defined by the equations x+y=2 and x=y^2 is calculated using multivariable calculus. The area of the region R is found to be 9/2, while the integrals for x and y yield values of 36/5 and -9/4, respectively. Consequently, the centroid coordinates are determined as (8/5, -1/2). The discussion also includes a request for information on rendering TikZ code, with confirmation that LaTeX can be used for this purpose. Overall, the thread provides a detailed mathematical analysis and practical advice for visual representation.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question.

Centroid of x+y=2 x=y^2?

Here is a link to the question:

Centroid of x+y=2 x=y^2? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hi Jamie,

The region that we're supposed to find the centroid for can be found in the figure below.
mhb_centroid.png
Assuming that you know multivariable calculus, one defines the centroid as $(\bar{x},\bar{y})$ where
\[\bar{x}= \frac{\displaystyle\iint\limits_R x\,dA}{\displaystyle\iint\limits_R \,dA}=\frac{1}{\text{Area of $R$}}\iint\limits_R x\,dA\qquad\text{ and }\qquad \bar{y}= \frac{\displaystyle\iint\limits_R y\,dA}{\displaystyle\iint\limits_R \,dA}=\frac{1}{\text{Area of $R$}}\iint\limits_R y\,dA\]
Due to the region $R$ we have, it would be best to treat it as a type II region and treat the bounding functions as functions of the form $x=f(y)$ (if we treated the region as type I, then we'd have more than one integral to work with for each of $\bar{x}$ and $\bar{y}$). With that said, the two bounding functions are $x=2-y$ and $x=y^2$.

Thus, we see that
\[\begin{aligned} \iint\limits_R \,dA &= \int_{-2}^1\int_{y^2}^{2-y}\,dx\,dy \\ &= \int_{-2}^1 2-y-y^2\,dy \\ &= \left.\left[ 2y-\frac{1}{2}y^2-\frac{1}{3}y^3\right]\right|_{-2}^1\\ &= \left(2-\frac{1}{2}-\frac{1}{3}\right) - \left(-4 -2 + \frac{8}{3}\right)\\ &= \frac{9}{2}\end{aligned}\]

\[\begin{aligned} \iint\limits_R x\,dA &= \int_{-2}^1\int_{y^2}^{2-y} x\,dx\,dy\\ &= \frac{1}{2}\int_{-2}^1 \left.\left[ x^2\right]\right|_{y^2}^{2-y}\,dy\\ &= \frac{1}{2}\int_{-2}^1 4-4y+y^2-y^4\,dy \\ &= \frac{1}{2}\left.\left[ 4y - 2y^2+\frac{1}{3}y^3- \frac{1}{5}y^5\right]\right|_{-2}^1\\ &= \frac{1}{2}\left[\left( 4-2+\frac{1}{3}-\frac{1}{5}\right) - \left( -8-8-\frac{8}{3} +\frac{32}{5}\right)\right]\\ &= \frac{36}{5}\end{aligned}\]

\[\begin{aligned} \iint\limits_R y\,dA &= \int_{-2}^1\int_{y^2}^{2-y} y\,dx\,dy\\ &= \int_{-2}^1 y(2-y-y^2)\,dy\\ &= \int_{-2}^1 2y-y^2-y^3\,dy \\ &= \left.\left[y^2-\frac{1}{3}y^3-\frac{1}{4}y^4\right]\right|_{-2}^1\\ &= \left[\left(1-\frac{1}{3}-\frac{1}{4}\right) - \left(4+\frac{8}{3} - 4\right)\right]\\ &= -\frac{9}{4}\end{aligned}\]

Therefore,

\[\bar{x}= \frac{\displaystyle\iint\limits_R x\,dA}{\displaystyle\iint\limits_R \,dA}= \frac{\dfrac{36}{5}}{\dfrac{9}{2}} = \frac{8}{5}\]

and

\[\bar{y}= \frac{\displaystyle\iint\limits_R y\,dA}{\displaystyle\iint\limits_R \,dA}= \frac{-\dfrac{9}{4}}{\dfrac{9}{2}} = -\frac{1}{2}\]

Thus, the centroid of this region is $(\bar{x},\bar{y})=\left(\dfrac{8}{5},-\dfrac{1}{2}\right)$ (as seen in the figure below).
mhb_centroid2.png
I hope this made sense!
 
For those of you who are interested, here's the TikZ codes for the two figures (in two separate posts because apparently I've exceeded the character limit for a single post).

mhb_centroid.png

Code:
\begin{figure}[!ht]
\centering
\begin{tikzpicture}[scale=.95]
   \draw[very thin,color=gray!35] (-5.5,-3.5) grid (5.5,3.5);
   \draw[<->] (-5.5,0) -- (5.5,0) node[right]{$x$};
   \draw[<->] (0,-4) -- (0,4) node[above]{$y$};
   \foreach\x in {-5,-4,-3,-2,-1,1,2,3,4,5}{
   \draw (\x,.1) -- (\x,-.1) node[below]{$\x$};
      }
   \foreach\x in {-3,-2,-1,1,2,3}{
   \draw (-.1,\x) -- (.1,\x) node[right]{$\x$};
     }
   \draw[<->,blue,thick](5.5,-3.5) -- (-1.5,3.5) node[above,left]{$x+y=2$};
   \fill.25] (1,1) -- (4,-2) -- plot[domain=0:4,smooth,samples=1500](\x,{-sqrt(\x)}) 
   -- plot[domain=0:1,smooth,samples=1500](\x,{sqrt(\x)}) --  cycle;
   \draw (1.5,-0.5) node{$R$};
   \draw[red,thick] plot[domain=0:5.5,smooth,samples=1500] (\x, {-sqrt(\x)});
   \draw[red,thick] plot[domain=0:5.5,smooth,samples=1500] (\x, {sqrt(\x)}) node[above]{$x=y^2$};
   \fill (1,1) circle (2pt) node[right=.2cm]{$(1,1)$};
   \fill (4,-2) circle (2pt) node[below=.25cm,left]{$(4,-2)$};
\end{tikzpicture}
\caption{The region $R$ bounded by the curves $x+y=2$ and $x=y^2$.}
\end{figure}
 
mhb_centroid2.png

Code:
\begin{figure}[!ht]
\centering
\begin{tikzpicture}[scale=.95]
   \draw[very thin,color=gray!35] (-5.5,-3.5) grid (5.5,3.5);
   \draw[<->] (-5.5,0) -- (5.5,0) node[right]{$x$};
   \draw[<->] (0,-4) -- (0,4) node[above]{$y$};
   \foreach\x in {-5,-4,-3,-2,-1,1,2,3,4,5}{
   \draw (\x,.1) -- (\x,-.1) node[below]{$\x$};
     }
   \foreach\x in {-3,-2,-1,1,2,3}{
   \draw (-.1,\x) -- (.1,\x) node[right]{$\x$};
     }
   \draw[<->,blue,thick](5.5,-3.5) -- (-1.5,3.5) node[above,left]{$x+y=2$};
   \fill.25] (1,1) -- (4,-2) -- plot[domain=0:4,smooth,samples=1500](\x,{-sqrt(\x)}) 
   -- plot[domain=0:1,smooth,samples=1500](\x,{sqrt(\x)}) --  cycle;
   \draw (1.5,-0.5) node{$R$};
   \draw[red,thick] plot[domain=0:5.5,smooth,samples=1500] (\x, {-sqrt(\x)});
   \draw[red,thick] plot[domain=0:5.5,smooth,samples=1500] (\x, {sqrt(\x)}) node[above]{$x=y^2$};
   \fill (1,1) circle (2pt) node[right=.2cm]{$(1,1)$};
   \fill (4,-2) circle (2pt) node[below=.25cm,left]{$(4,-2)$};
   \fill[blue] (1.6,-.5) circle (2pt);
   \draw[blue] (-2.5,-2)  node{$(\bar{x},\bar{y})=\left(\frac{8}{5},-\frac{1}{2}\right)$};
   \draw[->,color=blue] (-1,-2) to[out=0,in=270] (1.6,-.6);
\end{tikzpicture}
\caption{The centroid of the region $R$ bounded by the curves $x+y=2$ and $x=y^2$.}
\end{figure}
 
That is really great , thanks for sharing the code . By the way , do I need a program to render the code or I can do it online ?

PS : I need to draw some contours for the lessons I am about to write .
 
ZaidAlyafey said:
That is really great , thanks for sharing the code . By the way , do I need a program to render the code or I can do it online ?

PS : I need to draw some contours for the lessons I am about to write .

If you have LaTeX installed on your computer, then you should have no problem compiling it. You'll just need to include \usepackage{tikz} in the preamble of your document.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top