MHB Jessica's question at Yahoo Answers regarding approximate integration

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Area of the definite integral?

Find an approximation of the area of the region R under the graph of the function f on the interval [1, 3]. Use n = 4 subintervals. Choose the representative points to be the right endpoints of the subintervals.
f(x) = 9/x

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Re: Jessica's quation at Yahoo! Answers regarding approximate integration

Hello Jessica,

Let's look at a plot of the curve and the 4 rectangles the sum of whose areas we are to use to get an approximate value for the definite integral $$\int_1^3\frac{9}{x}\,dx$$:

View attachment 924

Rectangles have an area $A$ given by $A=bh$ where $b$ in the measure of the base and $h$ is the measure of the height. For each of these rectangles the base is $$\frac{3-1}{4}=\frac{1}{2}$$.

The red rectangle has an area of:

$$A_1=\frac{1}{2}\cdot\frac{9}{\frac{3}{2}}=3$$

The green rectangle has an area of:

$$A_2=\frac{1}{2}\cdot\frac{9}{2}=\frac{9}{4}$$

The blue rectangle has an area of:

$$A_3=\frac{1}{2}\cdot\frac{9}{\frac{5}{2}}=\frac{9}{5}$$

The orange rectangle has an area of:

$$A_4=\frac{1}{2}\cdot\frac{9}{3}=\frac{3}{2}$$

And so we may state:

$$\int_1^3\frac{9}{x}\,dx\approx3+\frac{9}{4}+\frac{9}{5}+\frac{3}{2}=\frac{171}{20}=8.55$$

We can improve the approximation by taking more sub-intervals. Let's let $n$ be the number of these regular partitions, and using the right-end-points, we may state the area of the $k$th rectangle as:

$$\Delta A=\frac{3-1}{n}\cdot\frac{9}{1+k\cdot\frac{2}{n}}=\frac{18}{n+2k}$$

And so we may state:

$$\int_1^3\frac{9}{x}\,dx\approx18\sum_{k=1}^n\frac{1}{n+2k}$$

$$\int_1^3\frac{9}{x}\,dx=18\lim_{n\to\infty}\left( \sum_{k=1}^n\frac{1}{n+2k} \right)$$

Now, since we know:

$$\int_1^3\frac{9}{x}\,dx=9\ln(3)\approx9.887510598013$$

We may state:

$$\lim_{n\to\infty}\left(\sum_{k=1}^n\frac{1}{n+2k} \right)=\ln\left(\sqrt{3} \right)$$
 

Attachments

  • jessica.jpg
    jessica.jpg
    6 KB · Views: 101
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top