Jesusluvsponies's question at Yahoo Answers (Real and rational roots)

  • Context: MHB 
  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Rational Roots
Click For Summary
SUMMARY

The discussion focuses on finding rational and real roots of three polynomials: \(6x^3 + 7x^2 + 2x - 10\), \(x^3 + x^2 - 8x - 8\), and \(x^5 - 2x^4 + 2x^3 - 3x + 2\). The Rational Root Theorem is applied to determine that the only rational root of the first polynomial is \(x = \frac{5}{6}\). For the second polynomial, the real roots are \(x = -1\) and \(x = \pm 2\sqrt{2}\). The third polynomial factors to \((x-1)^2(x+1)(x^2-x+2)\), with no further real roots from the quadratic factor.

PREREQUISITES
  • Understanding of the Rational Root Theorem
  • Familiarity with polynomial factorization techniques
  • Knowledge of the Ruffini rule for synthetic division
  • Basic concepts of real and rational roots in algebra
NEXT STEPS
  • Study the Rational Root Theorem in detail
  • Learn polynomial factorization methods, including synthetic division
  • Explore the properties of real and complex roots of polynomials
  • Practice solving higher-degree polynomial equations
USEFUL FOR

Students preparing for algebra exams, educators teaching polynomial functions, and anyone seeking to enhance their understanding of polynomial roots and factorization techniques.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

I have no idea how to do these, I missed lecture because I had the flu.
Can you please explain? I have an exam and this is part of the material covered. Thanks!

Find all rational roots of the polynomial
6x^3 + 7x^2 + 2x -10

Find all real roots of the polynomial
x^3 + x^2 -8x -8

Factor the polynomial as a product of linear factors and a factor g(x) such that g(x) is either a constant or a polynomial that has no rational roots.

x^5 -2^4 +2x^3 -3x +2 Thank you so much!

Here is a link to the question:

Polynomials, please help 10 points!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello jesusluvsponies,

We'll use the following theorem:

Rational root theorem - Wikipedia, the free encyclopedia

$(a)\;p(x)=6x^3 + 7x^2 + 2x -10$.

In this case, $p=\pm 1,\pm 2,\pm 5$ and $q=\pm 1,\pm 2,\pm3,\pm 6$. Substituting we get $p(5/6)=0$. Using the algorithm of Ruffini we get

$p(x)=(6x-5)(x^2+2x-2)$

But $x^2+2x-2$ has no real roots, so the only rational root of $p(x)$ is

$\boxed{\;x=5/6\;}$

$(b)\;q(x)=x^3 + x^2 -8x -8$.

In this case, $q(-1)=0$. Using the algorithm of Ruffini we get

$q(x)=(x+1)(x^2-8)$

and the real roots of $x^2-8$ are $\pm 2\sqrt{2}$, so the real roots of $q(x)$ are

$\boxed{\;x=-1,x=\pm 2\sqrt{2}\;}$

$(c)\;r(x)=x^5 -2x^4 +2x^3 -3x +2 $.

In this case, $r(1)=0$. Using the algorithm of Ruffini we get

$r(x)=(x-1)(x^4-x^3+x^2+x-2)$

But $x=1$ is a real root of $x^4-x^3+x^2+x-2$ which implies (again Ruffini)

$x^4-x^3+x^2+x-2=(x-1)(x^3+x+2)$

But $x=-1$ is a root of $x^3+x+2$ which implies (again Ruffini)

$x^3+x+2=(x+1)(x^2-x+2)$

But $x^2-x+2$ has no real roots, so

$\boxed{\;r(x)=(x-1)^2(x+1)(x^2-x+2)\;}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K