MHB Jesusluvsponies's question at Yahoo Answers (Real and rational roots)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Rational Roots
Click For Summary
The discussion addresses the process of finding rational and real roots for specific polynomials. For the polynomial 6x^3 + 7x^2 + 2x - 10, the only rational root identified is x = 5/6. The polynomial x^3 + x^2 - 8x - 8 has real roots at x = -1 and x = ±2√2. The polynomial x^5 - 2x^4 + 2x^3 - 3x + 2 factors into (x-1)²(x+1)(x²-x+2), with no additional real roots. The discussion emphasizes the application of the Rational Root Theorem and Ruffini's algorithm for polynomial factorization.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

I have no idea how to do these, I missed lecture because I had the flu.
Can you please explain? I have an exam and this is part of the material covered. Thanks!

Find all rational roots of the polynomial
6x^3 + 7x^2 + 2x -10

Find all real roots of the polynomial
x^3 + x^2 -8x -8

Factor the polynomial as a product of linear factors and a factor g(x) such that g(x) is either a constant or a polynomial that has no rational roots.

x^5 -2^4 +2x^3 -3x +2 Thank you so much!

Here is a link to the question:

Polynomials, please help 10 points!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello jesusluvsponies,

We'll use the following theorem:

Rational root theorem - Wikipedia, the free encyclopedia

$(a)\;p(x)=6x^3 + 7x^2 + 2x -10$.

In this case, $p=\pm 1,\pm 2,\pm 5$ and $q=\pm 1,\pm 2,\pm3,\pm 6$. Substituting we get $p(5/6)=0$. Using the algorithm of Ruffini we get

$p(x)=(6x-5)(x^2+2x-2)$

But $x^2+2x-2$ has no real roots, so the only rational root of $p(x)$ is

$\boxed{\;x=5/6\;}$

$(b)\;q(x)=x^3 + x^2 -8x -8$.

In this case, $q(-1)=0$. Using the algorithm of Ruffini we get

$q(x)=(x+1)(x^2-8)$

and the real roots of $x^2-8$ are $\pm 2\sqrt{2}$, so the real roots of $q(x)$ are

$\boxed{\;x=-1,x=\pm 2\sqrt{2}\;}$

$(c)\;r(x)=x^5 -2x^4 +2x^3 -3x +2 $.

In this case, $r(1)=0$. Using the algorithm of Ruffini we get

$r(x)=(x-1)(x^4-x^3+x^2+x-2)$

But $x=1$ is a real root of $x^4-x^3+x^2+x-2$ which implies (again Ruffini)

$x^4-x^3+x^2+x-2=(x-1)(x^3+x+2)$

But $x=-1$ is a root of $x^3+x+2$ which implies (again Ruffini)

$x^3+x+2=(x+1)(x^2-x+2)$

But $x^2-x+2$ has no real roots, so

$\boxed{\;r(x)=(x-1)^2(x+1)(x^2-x+2)\;}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K