MHB Joint distribution of a discrete random variable

AI Thread Summary
The discussion revolves around calculating the joint distribution of two random variables, X (the minimum number drawn) and Y (the maximum number drawn) from an urn containing six numbered balls. The user seeks to determine the probabilities for specific outcomes, such as X = 1 and Y = 5, and X = 2 and Y = 6. A suggested method for solving this is to enumerate all possible combinations of drawing four balls from the six, which totals 15 combinations. This approach, while potentially tedious, provides a systematic way to calculate the desired probabilities. Understanding the joint distribution requires careful consideration of the relationships between the values of X and Y based on the drawn combinations.
Yankel
Messages
390
Reaction score
0
Hello all

I have this question I am trying to solve.

In an urn there are 6 balls, numbered: 1,2,3,4,5,6. We take 4 balls outs, without replacement.

X - the minimal number we see
Y - the maximal number we see

I need to joint distribution.

I understand that X is getting the values 1,2,3 while Y 4,5,6.

The problem is calculating the probabilities. How do I calculate the probability that X = 1 and Y = 5 ? What about the probability that X = 2 and Y = 6 ? And so on...

thanks !
 
Mathematics news on Phys.org
Yankel said:
Hello all

I have this question I am trying to solve.

In an urn there are 6 balls, numbered: 1,2,3,4,5,6. We take 4 balls outs, without replacement.

X - the minimal number we see
Y - the maximal number we see

I need to joint distribution.

I understand that X is getting the values 1,2,3 while Y 4,5,6.

The problem is calculating the probabilities. How do I calculate the probability that X = 1 and Y = 5 ? What about the probability that X = 2 and Y = 6 ? And so on...

thanks !

Hi Yankel,

How about enumerating them all?
There are only $\binom 6 4 = 15$ possible combinations.
 
A little bit hard to count them all, but it works ! Thanks
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-sln2)+e^(-sln3)+e^(-sln4)+... , Re(s)>1 If we regards it as some function got from Laplace transformation, and let this real function be ζ(x), that means L[ζ(x)]=ζ(s), then: ζ(x)=L^-1[ζ(s)]=δ(x)+δ(x-ln2)+δ(x-ln3)+δ(x-ln4)+... , this represents a series of Dirac delta functions at the points of x=0, ln2, ln3, ln4, ... , It may be still difficult to understand what ζ(x) means, but once it is integrated, the truth is clear...

Similar threads

Replies
30
Views
4K
Replies
9
Views
2K
Replies
5
Views
2K
Replies
5
Views
2K
Replies
6
Views
4K
Back
Top