MHB Joint distribution of a discrete random variable

Click For Summary
The discussion revolves around calculating the joint distribution of two random variables, X (the minimum number drawn) and Y (the maximum number drawn) from an urn containing six numbered balls. The user seeks to determine the probabilities for specific outcomes, such as X = 1 and Y = 5, and X = 2 and Y = 6. A suggested method for solving this is to enumerate all possible combinations of drawing four balls from the six, which totals 15 combinations. This approach, while potentially tedious, provides a systematic way to calculate the desired probabilities. Understanding the joint distribution requires careful consideration of the relationships between the values of X and Y based on the drawn combinations.
Yankel
Messages
390
Reaction score
0
Hello all

I have this question I am trying to solve.

In an urn there are 6 balls, numbered: 1,2,3,4,5,6. We take 4 balls outs, without replacement.

X - the minimal number we see
Y - the maximal number we see

I need to joint distribution.

I understand that X is getting the values 1,2,3 while Y 4,5,6.

The problem is calculating the probabilities. How do I calculate the probability that X = 1 and Y = 5 ? What about the probability that X = 2 and Y = 6 ? And so on...

thanks !
 
Mathematics news on Phys.org
Yankel said:
Hello all

I have this question I am trying to solve.

In an urn there are 6 balls, numbered: 1,2,3,4,5,6. We take 4 balls outs, without replacement.

X - the minimal number we see
Y - the maximal number we see

I need to joint distribution.

I understand that X is getting the values 1,2,3 while Y 4,5,6.

The problem is calculating the probabilities. How do I calculate the probability that X = 1 and Y = 5 ? What about the probability that X = 2 and Y = 6 ? And so on...

thanks !

Hi Yankel,

How about enumerating them all?
There are only $\binom 6 4 = 15$ possible combinations.
 
A little bit hard to count them all, but it works ! Thanks
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K