MHB Jordan's question from Facebook (finding critical points)

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Jordan writes:

I have two questions that I've been trying to work out and I must be doing something wrong!
The first is finding all the critical points of the function:
f(x)=(6-x^2)^.5
And the second is finding all critical points of the function:
f(x)=(4-4x^2+8x)^.5

I would appreciate any input anybody could give, thanks!
 
Mathematics news on Phys.org
Hi Jordan :)

I would rewrite the .5 as 1/2 to make it easier for calculations.

So we have [math]f(x)=(6-x^2)^{\frac{1}{2}}[/math]. First we need to find the derivative and remember to use the chain rule.

[math]f'(x)=\frac{1}{2}(6-x^2)^{-\frac{1}{2}}(-2x)=\frac{-2x}{2(6-x^2)^{\frac{1}{2}}}=\frac{-x}{(6-x^2)^{\frac{1}{2}}}[/math]

Ok, so now we need to find where this equals 0 or where it's not defined. If the numerator equals 0 (the top) and the denominator (the bottom) does not, then the fraction equals 0 so we want to solve $-x=0$ for $x$ and it's obvious the solution is $x=0$. So we have our first critical point!

To find where the derivative is not defined we want to see when the denominator equals 0 (because dividing by 0 is bad!).

Let's look at [math]\sqrt{6-x^2}=0[/math]. Squaring both sides leads to [math]6-x^2=0[/math] or $x^2=6$. This has two solution, [math]x=\sqrt{6}[/math] and [math]x=-\sqrt{6}[/math].

To finish up, we found 3 critical points: [math]x=0, \sqrt{6}, -\sqrt{6}[/math].

What do you get when you try the second one?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top