MHB Jordan's question from Facebook (finding critical points)

AI Thread Summary
To find the critical points of the function f(x)=(6-x^2)^{1/2}, the derivative is calculated using the chain rule, resulting in f'(x)=-x/(6-x^2)^{1/2}. The critical points occur where the derivative equals zero or is undefined; solving -x=0 gives x=0, while setting the denominator to zero leads to x=\sqrt{6} and x=-\sqrt{6}. Thus, the three critical points identified are x=0, x=\sqrt{6}, and x=-\sqrt{6}. The discussion then prompts for similar analysis on the second function, f(x)=(4-4x^2+8x)^{1/2}.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Jordan writes:

I have two questions that I've been trying to work out and I must be doing something wrong!
The first is finding all the critical points of the function:
f(x)=(6-x^2)^.5
And the second is finding all critical points of the function:
f(x)=(4-4x^2+8x)^.5

I would appreciate any input anybody could give, thanks!
 
Mathematics news on Phys.org
Hi Jordan :)

I would rewrite the .5 as 1/2 to make it easier for calculations.

So we have [math]f(x)=(6-x^2)^{\frac{1}{2}}[/math]. First we need to find the derivative and remember to use the chain rule.

[math]f'(x)=\frac{1}{2}(6-x^2)^{-\frac{1}{2}}(-2x)=\frac{-2x}{2(6-x^2)^{\frac{1}{2}}}=\frac{-x}{(6-x^2)^{\frac{1}{2}}}[/math]

Ok, so now we need to find where this equals 0 or where it's not defined. If the numerator equals 0 (the top) and the denominator (the bottom) does not, then the fraction equals 0 so we want to solve $-x=0$ for $x$ and it's obvious the solution is $x=0$. So we have our first critical point!

To find where the derivative is not defined we want to see when the denominator equals 0 (because dividing by 0 is bad!).

Let's look at [math]\sqrt{6-x^2}=0[/math]. Squaring both sides leads to [math]6-x^2=0[/math] or $x^2=6$. This has two solution, [math]x=\sqrt{6}[/math] and [math]x=-\sqrt{6}[/math].

To finish up, we found 3 critical points: [math]x=0, \sqrt{6}, -\sqrt{6}[/math].

What do you get when you try the second one?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top