MHB Jun's question via email about Laplace Transform

Click For Summary
SUMMARY

The discussion centers on solving the initial value problem defined by the differential equation $\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 4\,y= -8\,H\left( t - 6 \right)$ with initial conditions $y(0) = 2$ and $y'(0) = 0$ using Laplace Transforms. The solution involves transforming the equation to the Laplace domain, yielding $Y(s) = 2\left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right)} \right]$. The final solution in the time domain is $y(t) = 2\left[ \cos(2t) + \left\{ \cos[2(t - 6)] - 1 \right\} H(t - 6) \right]$. An important correction was noted regarding the initial condition $y'(0) = 0$, suggesting the inclusion of an arbitrary constant in the solution.

PREREQUISITES
  • Understanding of Laplace Transforms and their properties
  • Familiarity with solving second-order linear differential equations
  • Knowledge of the Heaviside step function, $H(t)$
  • Ability to perform partial fraction decomposition
NEXT STEPS
  • Study the application of the Laplace Transform in solving differential equations
  • Learn about the Heaviside step function and its role in piecewise functions
  • Explore the second shift theorem in Laplace Transforms
  • Practice solving initial value problems with arbitrary constants in solutions
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working with differential equations and Laplace Transforms, particularly those interested in initial value problems and their solutions.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle y\left( t \right) $ satisfies the initial value problem

$\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 4\,y= -8\,H\left( t - 6 \right) , \quad y\left( 0 \right) = 2 , \,\, y'\left( 0 \right) = 0$

Find the solution to the initial value problem using Laplace Transforms.

Upon taking the Laplace Transform of the equation we have

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
s^2 \,Y\left( s \right) - 2\,s - 0 + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s}\\
\left( s^2 + 4 \right) Y\left( s \right) - 2\,s &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
\left( s^2 + 4\right) Y\left( s \right) &= 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s} \\
Y\left( s \right) &= \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \\
Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \end{align*}$

The first term's Inverse Transform can be read off the tables. The second requires the second shift theorem: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \, H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

$\displaystyle F\left( s \right) = \frac{4}{s\left( s^2 + 4 \right) }$

Applying Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B\,s + C}{s^2 + 4} &\equiv \frac{4}{s\left( s^2 + 4 \right) } \\
A\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \end{align*}$

Let $\displaystyle s = 0 \implies 4\,A = 4 \implies A = 1$, then

$\displaystyle \begin{align*} 1\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \\
s^2 + 4 + B\,s^2 + C\,s &\equiv 4 \\
\left( B + 1 \right) s^2 + C\,s + 4 &\equiv 0\,s^2 + 0\,s + 4 \end{align*}$

It's clear that $\displaystyle B + 1 = 0 \implies B = -1$ and $\displaystyle C = 0$. Thus

$\displaystyle \begin{align*} F\left( s \right) &= \frac{1}{s} - \frac{s}{s^2 + 4} \\
f\left( t \right) &= 1 - \cos{ \left( 2\,t \right) } \\
f\left( t - 6 \right) \, H\left( t - 6 \right) &= \left\{ 1 - \cos{ \left[ 2 \left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \end{align*}$

So from our original DE

$\displaystyle \begin{align*} Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \\
\\
y \left( t \right) &= 2\left[ \cos{ \left( 2\,t \right) } - \left\{ 1 - \cos{ \left[ 2\left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \right] \\
&= 2 \left[ \cos{ \left( 2\,t \right) } + \left\{ \cos{ \left[ 2\left( t - 6 \right) \right] } - 1 \right\} \, H\left( t - 6 \right) \right] \end{align*} $
 
Mathematics news on Phys.org
Was it given that ##y’(0)=0##? The second line after you apply the transform (the 0), I think this should be replaced by an arbitrary constant, say c? Try that. Since it’s a second order IVP with only one initial value given the solution should contain an unknown constant.

Here’s you work accounting for this constant up to a certain point with differences ##\boxed{\text{new term(s)}}##.

Your work:
Upon taking the Laplace Transform of the equation we have

$ \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\ s^2 \,Y\left( s \right) - 2\,s - \boxed{c} + 4\,Y\left( s \right) &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ \left( s^2 + 4 \right) Y\left( s \right) - 2\,s &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ \left( s^2 + 4\right) Y\left( s \right) &=& 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ Y\left( s \right) &=& \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } +\boxed{\frac{c}{s^2+4}} \\ Y\left( s \right) &=& 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } + \boxed{\frac{c}{2(s^2+4)}} \right] \\ \end{align*}$
 
Last edited:
Sorry had latex problems, refresh the page. Simple from there, just take the inverse transform of the last boxed term. Should be ##c_1 \sin (2t)## where ##c_1 = \tfrac{c}{4}##. Got it from there?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K