MHB Jun's question via email about Laplace Transform

Click For Summary
The discussion revolves around solving the initial value problem for the differential equation using Laplace Transforms. The initial conditions provided are y(0) = 2 and y'(0) = 0. The Laplace Transform leads to the expression Y(s) = 2[s/(s^2 + 4) - 4e^(-6s)/(s(s^2 + 4))]. A key point raised is the potential need for an arbitrary constant due to the second-order nature of the problem, suggesting that the solution could contain an additional term. Ultimately, the solution is derived as y(t) = 2[cos(2t) + (cos(2(t - 6)) - 1)H(t - 6)], incorporating the necessary adjustments for the initial conditions.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle y\left( t \right) $ satisfies the initial value problem

$\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 4\,y= -8\,H\left( t - 6 \right) , \quad y\left( 0 \right) = 2 , \,\, y'\left( 0 \right) = 0$

Find the solution to the initial value problem using Laplace Transforms.

Upon taking the Laplace Transform of the equation we have

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
s^2 \,Y\left( s \right) - 2\,s - 0 + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s}\\
\left( s^2 + 4 \right) Y\left( s \right) - 2\,s &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
\left( s^2 + 4\right) Y\left( s \right) &= 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s} \\
Y\left( s \right) &= \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \\
Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \end{align*}$

The first term's Inverse Transform can be read off the tables. The second requires the second shift theorem: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \, H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

$\displaystyle F\left( s \right) = \frac{4}{s\left( s^2 + 4 \right) }$

Applying Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B\,s + C}{s^2 + 4} &\equiv \frac{4}{s\left( s^2 + 4 \right) } \\
A\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \end{align*}$

Let $\displaystyle s = 0 \implies 4\,A = 4 \implies A = 1$, then

$\displaystyle \begin{align*} 1\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \\
s^2 + 4 + B\,s^2 + C\,s &\equiv 4 \\
\left( B + 1 \right) s^2 + C\,s + 4 &\equiv 0\,s^2 + 0\,s + 4 \end{align*}$

It's clear that $\displaystyle B + 1 = 0 \implies B = -1$ and $\displaystyle C = 0$. Thus

$\displaystyle \begin{align*} F\left( s \right) &= \frac{1}{s} - \frac{s}{s^2 + 4} \\
f\left( t \right) &= 1 - \cos{ \left( 2\,t \right) } \\
f\left( t - 6 \right) \, H\left( t - 6 \right) &= \left\{ 1 - \cos{ \left[ 2 \left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \end{align*}$

So from our original DE

$\displaystyle \begin{align*} Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \\
\\
y \left( t \right) &= 2\left[ \cos{ \left( 2\,t \right) } - \left\{ 1 - \cos{ \left[ 2\left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \right] \\
&= 2 \left[ \cos{ \left( 2\,t \right) } + \left\{ \cos{ \left[ 2\left( t - 6 \right) \right] } - 1 \right\} \, H\left( t - 6 \right) \right] \end{align*} $
 
Mathematics news on Phys.org
Was it given that ##y’(0)=0##? The second line after you apply the transform (the 0), I think this should be replaced by an arbitrary constant, say c? Try that. Since it’s a second order IVP with only one initial value given the solution should contain an unknown constant.

Here’s you work accounting for this constant up to a certain point with differences ##\boxed{\text{new term(s)}}##.

Your work:
Upon taking the Laplace Transform of the equation we have

$ \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\ s^2 \,Y\left( s \right) - 2\,s - \boxed{c} + 4\,Y\left( s \right) &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ \left( s^2 + 4 \right) Y\left( s \right) - 2\,s &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ \left( s^2 + 4\right) Y\left( s \right) &=& 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ Y\left( s \right) &=& \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } +\boxed{\frac{c}{s^2+4}} \\ Y\left( s \right) &=& 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } + \boxed{\frac{c}{2(s^2+4)}} \right] \\ \end{align*}$
 
Last edited:
Sorry had latex problems, refresh the page. Simple from there, just take the inverse transform of the last boxed term. Should be ##c_1 \sin (2t)## where ##c_1 = \tfrac{c}{4}##. Got it from there?
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K