MHB Jun's question via email about Laplace Transform

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle y\left( t \right) $ satisfies the initial value problem

$\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 4\,y= -8\,H\left( t - 6 \right) , \quad y\left( 0 \right) = 2 , \,\, y'\left( 0 \right) = 0$

Find the solution to the initial value problem using Laplace Transforms.

Upon taking the Laplace Transform of the equation we have

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
s^2 \,Y\left( s \right) - 2\,s - 0 + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s}\\
\left( s^2 + 4 \right) Y\left( s \right) - 2\,s &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
\left( s^2 + 4\right) Y\left( s \right) &= 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s} \\
Y\left( s \right) &= \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \\
Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \end{align*}$

The first term's Inverse Transform can be read off the tables. The second requires the second shift theorem: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \, H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

$\displaystyle F\left( s \right) = \frac{4}{s\left( s^2 + 4 \right) }$

Applying Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B\,s + C}{s^2 + 4} &\equiv \frac{4}{s\left( s^2 + 4 \right) } \\
A\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \end{align*}$

Let $\displaystyle s = 0 \implies 4\,A = 4 \implies A = 1$, then

$\displaystyle \begin{align*} 1\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \\
s^2 + 4 + B\,s^2 + C\,s &\equiv 4 \\
\left( B + 1 \right) s^2 + C\,s + 4 &\equiv 0\,s^2 + 0\,s + 4 \end{align*}$

It's clear that $\displaystyle B + 1 = 0 \implies B = -1$ and $\displaystyle C = 0$. Thus

$\displaystyle \begin{align*} F\left( s \right) &= \frac{1}{s} - \frac{s}{s^2 + 4} \\
f\left( t \right) &= 1 - \cos{ \left( 2\,t \right) } \\
f\left( t - 6 \right) \, H\left( t - 6 \right) &= \left\{ 1 - \cos{ \left[ 2 \left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \end{align*}$

So from our original DE

$\displaystyle \begin{align*} Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \\
\\
y \left( t \right) &= 2\left[ \cos{ \left( 2\,t \right) } - \left\{ 1 - \cos{ \left[ 2\left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \right] \\
&= 2 \left[ \cos{ \left( 2\,t \right) } + \left\{ \cos{ \left[ 2\left( t - 6 \right) \right] } - 1 \right\} \, H\left( t - 6 \right) \right] \end{align*} $
 
Mathematics news on Phys.org
Was it given that ##y’(0)=0##? The second line after you apply the transform (the 0), I think this should be replaced by an arbitrary constant, say c? Try that. Since it’s a second order IVP with only one initial value given the solution should contain an unknown constant.

Here’s you work accounting for this constant up to a certain point with differences ##\boxed{\text{new term(s)}}##.

Your work:
Upon taking the Laplace Transform of the equation we have

$ \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\ s^2 \,Y\left( s \right) - 2\,s - \boxed{c} + 4\,Y\left( s \right) &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ \left( s^2 + 4 \right) Y\left( s \right) - 2\,s &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ \left( s^2 + 4\right) Y\left( s \right) &=& 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ Y\left( s \right) &=& \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } +\boxed{\frac{c}{s^2+4}} \\ Y\left( s \right) &=& 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } + \boxed{\frac{c}{2(s^2+4)}} \right] \\ \end{align*}$
 
Last edited:
Sorry had latex problems, refresh the page. Simple from there, just take the inverse transform of the last boxed term. Should be ##c_1 \sin (2t)## where ##c_1 = \tfrac{c}{4}##. Got it from there?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top