MHB Jun's question via email about Laplace Transform

Click For Summary
The discussion revolves around solving the initial value problem for the differential equation using Laplace Transforms. The initial conditions provided are y(0) = 2 and y'(0) = 0. The Laplace Transform leads to the expression Y(s) = 2[s/(s^2 + 4) - 4e^(-6s)/(s(s^2 + 4))]. A key point raised is the potential need for an arbitrary constant due to the second-order nature of the problem, suggesting that the solution could contain an additional term. Ultimately, the solution is derived as y(t) = 2[cos(2t) + (cos(2(t - 6)) - 1)H(t - 6)], incorporating the necessary adjustments for the initial conditions.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle y\left( t \right) $ satisfies the initial value problem

$\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 4\,y= -8\,H\left( t - 6 \right) , \quad y\left( 0 \right) = 2 , \,\, y'\left( 0 \right) = 0$

Find the solution to the initial value problem using Laplace Transforms.

Upon taking the Laplace Transform of the equation we have

$\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
s^2 \,Y\left( s \right) - 2\,s - 0 + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s}\\
\left( s^2 + 4 \right) Y\left( s \right) - 2\,s &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
\left( s^2 + 4\right) Y\left( s \right) &= 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s} \\
Y\left( s \right) &= \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \\
Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \end{align*}$

The first term's Inverse Transform can be read off the tables. The second requires the second shift theorem: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \, H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

$\displaystyle F\left( s \right) = \frac{4}{s\left( s^2 + 4 \right) }$

Applying Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B\,s + C}{s^2 + 4} &\equiv \frac{4}{s\left( s^2 + 4 \right) } \\
A\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \end{align*}$

Let $\displaystyle s = 0 \implies 4\,A = 4 \implies A = 1$, then

$\displaystyle \begin{align*} 1\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \\
s^2 + 4 + B\,s^2 + C\,s &\equiv 4 \\
\left( B + 1 \right) s^2 + C\,s + 4 &\equiv 0\,s^2 + 0\,s + 4 \end{align*}$

It's clear that $\displaystyle B + 1 = 0 \implies B = -1$ and $\displaystyle C = 0$. Thus

$\displaystyle \begin{align*} F\left( s \right) &= \frac{1}{s} - \frac{s}{s^2 + 4} \\
f\left( t \right) &= 1 - \cos{ \left( 2\,t \right) } \\
f\left( t - 6 \right) \, H\left( t - 6 \right) &= \left\{ 1 - \cos{ \left[ 2 \left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \end{align*}$

So from our original DE

$\displaystyle \begin{align*} Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \\
\\
y \left( t \right) &= 2\left[ \cos{ \left( 2\,t \right) } - \left\{ 1 - \cos{ \left[ 2\left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \right] \\
&= 2 \left[ \cos{ \left( 2\,t \right) } + \left\{ \cos{ \left[ 2\left( t - 6 \right) \right] } - 1 \right\} \, H\left( t - 6 \right) \right] \end{align*} $
 
Mathematics news on Phys.org
Was it given that ##y’(0)=0##? The second line after you apply the transform (the 0), I think this should be replaced by an arbitrary constant, say c? Try that. Since it’s a second order IVP with only one initial value given the solution should contain an unknown constant.

Here’s you work accounting for this constant up to a certain point with differences ##\boxed{\text{new term(s)}}##.

Your work:
Upon taking the Laplace Transform of the equation we have

$ \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\ s^2 \,Y\left( s \right) - 2\,s - \boxed{c} + 4\,Y\left( s \right) &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ \left( s^2 + 4 \right) Y\left( s \right) - 2\,s &=& -\frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ \left( s^2 + 4\right) Y\left( s \right) &=& 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s}+\boxed{c} \\ Y\left( s \right) &=& \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } +\boxed{\frac{c}{s^2+4}} \\ Y\left( s \right) &=& 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } + \boxed{\frac{c}{2(s^2+4)}} \right] \\ \end{align*}$
 
Last edited:
Sorry had latex problems, refresh the page. Simple from there, just take the inverse transform of the last boxed term. Should be ##c_1 \sin (2t)## where ##c_1 = \tfrac{c}{4}##. Got it from there?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...