I am given the following set of 4x4 matrices. How can i justify that they form a basis for the Lie Algebra of the group SO(4)? I know that they must be real matrices, and [itex]AA^{T}=\mathbb{I}[/itex], and the [itex]detA = +-1.[/itex] Do i show that the matrices are linearly independent, verify these properties, and so they are a basis? Why are they 6 elements?(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

_{A_1}=\begin{pmatrix}

0 &0 &0 &0 \\

0 & 0 & 1 & 0 \\

0& -1 &0 &0 \\

0& 0& 0 & 0

\end{pmatrix}

,\\

\

_{A_2}=\begin{pmatrix}

0 &0 &-1 &0 \\

0 & 0 & 0 & 0 \\

1& 0 &0 &0 \\

0& 0& 0 & 0

\end{pmatrix}

,\\

_{A_3}=\begin{pmatrix}

0 &-1 &0 &0 \\

1 & 0 & 0 & 0 \\

0& 0 &0 &0 \\

0& 0& 0 & 0

\end{pmatrix}

\\

_{B_1}=\begin{pmatrix}

0 &0 &0 &-1 \\

0 & 0 & 0 & 0 \\

0& 0 &0 &0 \\

1& 0& 0 & 0

\end{pmatrix}

,\\

_{B_2}=\begin{pmatrix}

0 &0 &0 &0 \\

0 & 0 & 0 & -1 \\

0& 0 &0 &0 \\

0& 1& 0 & 0

\end{pmatrix}

,\\

_{B_3}=\begin{pmatrix}

0 &0 &0 &0 \\

0 & 0 & 0 & 0 \\

0& 0 &0 &1 \\

0& 0& -1 & 0

\end{pmatrix}

[/tex]

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Justify matrices form basis for SO(4)

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - Justify matrices form | Date |
---|---|

I Getting a matrix into row-echelon form, with zero-value pivots | Feb 17, 2018 |

I Eigenvalues of Circulant matrices | Oct 1, 2017 |

I Eigenvalues of block matrices | Sep 10, 2017 |

**Physics Forums - The Fusion of Science and Community**