MHB Symmetry Operations of a Cube: Geometric Descriptions and Matrix Representations

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Cube Symmetries
Click For Summary
The discussion focuses on the symmetry operations of a cube, represented through geometric transformations and matrix representations. The set W consists of points in three-dimensional space that define the vertices of a cube, and various matrices are proposed to demonstrate symmetries, including rotations and reflections. It is established that matrices such as d and s are orthogonal and thus serve as isometries, mapping cube vertices onto themselves. The geometric interpretations of these transformations are explored, with emphasis on identifying eigenvalues and eigenvectors to classify the symmetries as rotations or reflections. The conversation concludes with a consensus on the method for analyzing the set D to determine its symmetries.
  • #31
Klaas van Aarsen said:
The vector $v$ is fine.
The problem is that we have 2 possible choices for $v'$ and we need to pick the right one.
That is, the one such that $v\times v'$ is in the same direction as $u$. 🤔

Taking $v'=\left (0, 1, 1\right )$ we have the following:

We have the vector $w=u\times v=(1,1,-1)\times (-1,0,-1)=(-1,2,1)$ and we get $\displaystyle{w'=\|w\|\frac{u\times v'}{\|u\times v'\|}=\sqrt{6}\frac{(1,1,-1)\times (0, 1, 1)}{\|(1,1,-1)\times (0, 1, 1)\|}=\sqrt{6}\frac{(2,-1,1)}{\sqrt{6}}=(2,-1,1)}$.

The condition is now satisfied, isn't it? We have $w\cdot v'=3$.

So we get the matrix \begin{equation*}\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0\end{pmatrix}\end{equation*}

:unsure:
 
Physics news on Phys.org
  • #32
mathmari said:
The condition is now satisfied, isn't it? We have $w\cdot v'=3$.

So we get the matrix \begin{equation*}\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0\end{pmatrix}\end{equation*}
Yep. All correct. (Nod)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K