MHB Symmetry Operations of a Cube: Geometric Descriptions and Matrix Representations

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Cube Symmetries
  • #31
Klaas van Aarsen said:
The vector $v$ is fine.
The problem is that we have 2 possible choices for $v'$ and we need to pick the right one.
That is, the one such that $v\times v'$ is in the same direction as $u$. đŸ€”

Taking $v'=\left (0, 1, 1\right )$ we have the following:

We have the vector $w=u\times v=(1,1,-1)\times (-1,0,-1)=(-1,2,1)$ and we get $\displaystyle{w'=\|w\|\frac{u\times v'}{\|u\times v'\|}=\sqrt{6}\frac{(1,1,-1)\times (0, 1, 1)}{\|(1,1,-1)\times (0, 1, 1)\|}=\sqrt{6}\frac{(2,-1,1)}{\sqrt{6}}=(2,-1,1)}$.

The condition is now satisfied, isn't it? We have $w\cdot v'=3$.

So we get the matrix \begin{equation*}\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0\end{pmatrix}\end{equation*}

:unsure:
 
Physics news on Phys.org
  • #32
mathmari said:
The condition is now satisfied, isn't it? We have $w\cdot v'=3$.

So we get the matrix \begin{equation*}\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0\end{pmatrix}\end{equation*}
Yep. All correct. (Nod)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K