MHB K^n as a K[T]-module - Example 2.1.2

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading An Introduction to Rings and Modules With K-Theory in View by A.J. Berrick and M.E. Keating (B&K).

I need help with understanding Example 2.1.2 (ii) (page 39) which concerns $$V = K^n$$ viewed as a module over the polynomial ring $$K[T]$$.

Example 2.1.2 (ii) (page 39) reads as follows:View attachment 2965In the above text by B&K we read:

" ... ... it is easy to verify that the decomposition $$V = U \oplus W$$ expresses $$V$$ as a direct sum of $$K[T]$$-submodules precisely when $$A = \left(\begin{array}{cc}B&0\\0&D\end{array}\right)$$

with $$B$$ an $$r \times r$$ matrix

and

$$D$$ an $$(n - r) \times (n - r)$$ matrix, $$B$$ and $$D$$ giving the action of $$T$$ on $$U$$ and $$W$$ respectively. ... ..."

I am trying to formally and rigorously verify this statement, but am unsure how to approach this task. Can someone please help me to get started on this verification ... ?

------------------------------------------------

Other relevant text in B&K that MHB members may need to interpret and understand the above example follows.

B&K's notation for polynomial rings is as follows:

View attachment 2966
B&K's definition of a module is as follows:
View attachment 2967
View attachment 2968
B&K's explanation and notation for $$K^n$$ as a right module over $$K[T|$$ is as follows:View attachment 2969
 
Last edited:
Physics news on Phys.org
Well, first let's look at what we need to happen for $\mathcal{K}^n$ to be the direct sum of $U$ and $V$ as $\mathcal{K}[T]$-modules.

First of all, we need $U$ and $V$ to act as $\mathcal{K}[T]$-submodules.

The closure under addition is clear: as vector subspaces, both $U$ and $V$ are abelian groups, and thereby closed under addition.

So what we need to do is verify that they are likewise closed under the $\mathcal{K}[T]$-action, that:

$u \cdot f(T) \in U$ for all $f(T) \in \mathcal{K}[T]$ (a similar consideration holds for $V$).

So we need $Au \in U$. This will ensure that $A^tu \in U$, and therefore that:

$A^tuf_j \in U$, and so (adding all the terms) $u \cdot f(T) \in U$.

If we write $A$ in block form, this ($Au \in U$) becomes:

$\begin{bmatrix}B&H\\K&D \end{bmatrix} \begin{bmatrix}u\\0 \end{bmatrix} = \begin{bmatrix}u'\\0 \end{bmatrix}$

To achieve this, we must have $Ku + D0 = Ku = 0$, for ALL $u \in U$. So $K$ is the 0-block.

A similar analysis with $V$ shows $H$ must be the 0-block.

Note that $U + W = V$ considered purely as abelian groups. Furthermore, note that:

$u \cdot 1_{\mathcal{K}[T]} = Iu\cdot 1 = u$, and similarly for $V$, so as $\mathcal{K}[T]$-modules these are non-zero (this is true even if the matrix $A$ is the 0-matrix, since the action of constant polynomials does not have any $A^tu$ terms).

Finally, since $U \cap W = \{0_V\}$ (since we have a direct sum of vector spaces), this is still true when we consider them as $\mathcal{K}[T]$-modules. So (DS1) and (DS2) are satisfied, we have a direct sum as modules.

(in my opinion this flows better with a left-action, but it's "essentially" the same).
 
Deveno said:
Well, first let's look at what we need to happen for $\mathcal{K}^n$ to be the direct sum of $U$ and $V$ as $\mathcal{K}[T]$-modules.

First of all, we need $U$ and $V$ to act as $\mathcal{K}[T]$-submodules.

The closure under addition is clear: as vector subspaces, both $U$ and $V$ are abelian groups, and thereby closed under addition.

So what we need to do is verify that they are likewise closed under the $\mathcal{K}[T]$-action, that:

$u \cdot f(T) \in U$ for all $f(T) \in \mathcal{K}[T]$ (a similar consideration holds for $V$).

So we need $Au \in U$. This will ensure that $A^tu \in U$, and therefore that:

$A^tuf_j \in U$, and so (adding all the terms) $u \cdot f(T) \in U$.

If we write $A$ in block form, this ($Au \in U$) becomes:

$\begin{bmatrix}B&H\\K&D \end{bmatrix} \begin{bmatrix}u\\0 \end{bmatrix} = \begin{bmatrix}u'\\0 \end{bmatrix}$

To achieve this, we must have $Ku + D0 = Ku = 0$, for ALL $u \in U$. So $K$ is the 0-block.

A similar analysis with $V$ shows $H$ must be the 0-block.

Note that $U + W = V$ considered purely as abelian groups. Furthermore, note that:

$u \cdot 1_{\mathcal{K}[T]} = Iu\cdot 1 = u$, and similarly for $V$, so as $\mathcal{K}[T]$-modules these are non-zero (this is true even if the matrix $A$ is the 0-matrix, since the action of constant polynomials does not have any $A^tu$ terms).

Finally, since $U \cap W = \{0_V\}$ (since we have a direct sum of vector spaces), this is still true when we consider them as $\mathcal{K}[T]$-modules. So (DS1) and (DS2) are satisfied, we have a direct sum as modules.

(in my opinion this flows better with a left-action, but it's "essentially" the same).
Thanks Deveno ... but I need your help in order to clarify some of the mechanics of the $\mathcal{K}[T]$-actions for $$U$$ and $$V$$ ...

I can see that $$U$$ and $$V$$ are both abelian groups under addition and are therefore closed under addition, but as I have indicated above I am having trouble understanding the mechanics of the $\mathcal{K}[T]$-actions for $$U$$ and $$V$$ ... hope you can help ...
I will explain my difficulties by focusing on $$ U = \mathcal{K}^r$$ ... the same considerations apply to $$ V = \mathcal{K}^{n-r} $$ ... ...

Now, consider the action $$u \bullet f(T)$$ ... ...

$$ u \bullet f(T) = u \bullet (f_0 + f_1T + f_2T^2 + ... \ ... + f_rT^r ) $$

Therefore, by the definition of the action we have:

$$ u \bullet f(T) = uf_0 + Auf_1 + A^2uf_2 + ... \ ... + A^ruf_r $$

Now consider the term $$uf_0$$ in the above expression ...

Let $$u = \begin{pmatrix} u_1 \\ . \\ . \\ . \\ u_r \end{pmatrix}$$, $$f_0 = \begin{pmatrix} f_{10} \\ f_{20} \\ . \\ . \\ . \\ f_{n0} \end{pmatrix}$$

... so how do we calculate/form $$uf_0$$?

Similarly $$A$$ is $$(n \times n)$$ , $$u$$ is $$(r \times 1)$$, and $$f$$ is $$(n \times 1)$$ ...

so then how do we calculate/form $$ Auf_1 $$ ... and so on?

Hope you can help ...

Peter
 
Last edited:
Peter said:
Thanks Deveno ... but I need your help in order to clarify some of the mechanics of the $\mathcal{K}[T]$-actions for $$U$$ and $$V$$ ...

I can see that $$U$$ and $$V$$ are both abelian groups under addition and are therefore closed under addition, but as I have indicated above I am having trouble understanding the mechanics of the $\mathcal{K}[T]$-actions for $$U$$ and $$V$$ ... hope you can help ...
I will explain my difficulties by focusing on $$ U = \mathcal{K}^r$$ ... the same considerations apply to $$ V = \mathcal{K}^{n-r} $$ ... ...

Now, consider the action $$u \bullet f(T)$$ ... ...

$$ u \bullet f(T) = u \bullet (f_0 + f_1T + f_2T^2 + ... \ ... + f_rT^r ) $$

Therefore, by the definition of the action we have:

$$ u \bullet f(T) = uf_0 + Auf_1 + A^2uf_2 + ... \ ... + A^ruf_r $$

Now consider the term $$uf_0$$ in the above expression ...

Let $$u = \begin{pmatrix} u_1 \\ . \\ . \\ . \\ u_r \end{pmatrix}$$, $$f_0 = \begin{pmatrix} f_{10} \\ f_{20} \\ . \\ . \\ . \\ f_{n0} \end{pmatrix}$$

... so how do we calculate/form $$uf_0$$?

Similarly $$A$$ is $$(n \times n)$$ , $$u$$ is $$(r \times 1)$$, and $$f$$ is $$(n \times 1)$$ ...

so then how do we calculate/form $$ Auf_1 $$ ... and so on?

Hope you can help ...

Peter
$f \in \mathcal{K}[T]$, so when we write:

$f(T) = f_0 + f_1T + \cdots + f_nT^n$, each of the $f_j \in \mathcal{K}$, these are just field elements.

Now in our given basis for $\mathcal{K}^n$, a typical $u \in U$ looks like:

$u = \begin{pmatrix}u_1\\u_2\\ \vdots\\u_r\\0\\0\\ \vdots\\0 \end{pmatrix}$

This is an $n \times 1$ matrix, and $A$ is an $n \times n$ matrix, so $Au$ is an $n \times 1$ matrix.

$Auf_1$ is just the $n \times 1$ matrix where every entry of $Au$ is multiplied by the coefficient $f_1$ of $T$ in the polynomial $f(T)$ (we're only writing it on the right so we get a right-action).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top