MHB Kamal's Questions via email about Implicit Differentiation

AI Thread Summary
The discussion focuses on implicit differentiation, emphasizing that when differentiating both sides of an equation, the Chain Rule is essential since y is a function of x. The participants derive the first and second derivatives of y with respect to x, ultimately expressing the second derivative in terms of y and x. They also highlight the necessity of applying the Chain Rule when x is a function of another variable, t. The conversation concludes with a note that the first problem was solved correctly, while the second problem was copied incorrectly. Understanding these differentiation techniques is crucial for further mathematical applications.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5525

Since we have this relationship between x and y, as the two sides are equal, so are their derivatives. We just have to remember that as y is a function of x, any function of y is also a function of x, with the inner function "y" composed inside whatever is being told to do to the y. So to differentiate these parts the Chain Rule would be needed. All other rules like the product and quotient rules will still apply as well. Anyway, differentiating both sides with respect to x gives

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\,y + x^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^2 \right) \\ x\,\frac{\mathrm{d}y}{\mathrm{d}x} + 1\,y + 2\,x &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \\ x\,\frac{\mathrm{d}y}{\mathrm{d}x} + y + 2\,x &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\left( 2\,y \right) \\ y + 2\,x &= 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} - x\,\frac{\mathrm{d}y}{\mathrm{d}x} \\ y + 2\,x &= \left( 2\,y - x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{y + 2\,x}{2\,y - x} \end{align*}$

This will be important for later. Going back a step and differentiating both sides with respect to x again we have

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \,\left( y + 2\,x \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( 2\,y - x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \right] \\ \frac{\mathrm{d}y}{\mathrm{d}x} + 2 &= \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} + \left( 2\,\frac{\mathrm{d}y}{\mathrm{d}x} - 1 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{\mathrm{d}y}{\mathrm{d}x} + 2 &= \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} + 2\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 - \frac{\mathrm{d}y}{\mathrm{d}x} \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2 + 2\,\frac{\mathrm{d}y}{\mathrm{d}x} - 2\,\left( \frac{\mathrm{d}y}{\mathrm{d}x}\right) ^2 \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ 1 + \frac{\mathrm{d}y}{\mathrm{d}x} - \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 \right] \end{align*}$

and since we already found that $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y + 2\,x}{2\,y - x } \end{align*}$ that means

$\displaystyle \begin{align*} \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2 \, \left[ 1 + \frac{y + 2\,x}{2\,y - x} - \left( \frac{y + 2\,x}{2\,y - x } \right) ^2 \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{\left( 2\,y - x \right) ^2 + \left( 2\,y - x \right) \left( y + 2\,x \right) - \left( y + 2\,x \right) ^2}{\left( 2\,y - x \right) ^2 } \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{4\,y^2 - 4\,x\,y + x^2 + 2\,y^2 + 4\,x\,y - x\,y - 2\,x^2 - y^2 - 4\,x\,y - 4\,x^2}{\left( 2\,y - x \right) ^2} \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{5\,y^2 - 5\,x\,y - 5\,x^2 }{\left( 2\,y - x \right) ^2} \right] \\ \frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= \frac{10\,\left( y^2 - x\,y - x^2 \right) }{\left( 2\,y - x \right) ^3} \end{align*}$View attachment 5526

Here x is a function of t, so again, to differentiate any x terms, we must use the Chain Rule.

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t} \,\left( x^3 + x\,t^{-1} \right) &= \frac{\mathrm{d}}{\mathrm{d}t} \,\left[ t^2 \left( 1 + x^2 \right) \right] \\ \frac{\mathrm{d}x}{\mathrm{d}t} \, \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x^3 \right) + \frac{\mathrm{d}x}{\mathrm{d}t} \, t^{-1} - x \, t^{-2} &= 2 \, t \, \left( 1 + x^2 \right) + t^2 \, \frac{ \mathrm{d}x }{ \mathrm{d}t } \, \frac{ \mathrm{d} }{\mathrm{d}x} \, \left( 1 + x^2 \right) \\ \frac{\mathrm{d}x}{\mathrm{d}t}\,\left( 3\,x^2 \right) + \frac{\mathrm{d}x}{\mathrm{d}t}\,t^{-1} - x \,t^{-2} &= 2\,t\,\left( 1 + x^2 \right) + t^2\,\frac{\mathrm{d}x}{\mathrm{d}t} \,\left( 2\,x \right) \\ 3\,x^2\,\frac{\mathrm{d}x}{\mathrm{d}t} + t^{-1}\,\frac{\mathrm{d}x}{\mathrm{d}t} - 2\,x\,t^2 \,\frac{\mathrm{d}x}{\mathrm{d}t} &= 2\,t + 2\,x^2\,t + x\,t^{-2} \\ t^2\,\left( 3\,x^2 + t^{-1} - 2\,x\,t^2 \right) \,\frac{\mathrm{d}x}{\mathrm{d}t} &= t^2\,\left( 2\,t + 2\,x^2\,t + x\,t^{-2} \right) \\ \left( 3\,x^2\,t^2 + t - 2\,x\,t^4 \right) \,\frac{\mathrm{d}x}{\mathrm{d}t} &= 2\,t^3 + 2\,x^2\,t^3 + x \\ \frac{\mathrm{d}x}{\mathrm{d}t} &= \frac{2\,t^3 + 2\,x^2\,t^3 + x}{3\,x^2\,t^2 + t - 2\,x\,t^4} \end{align*}$
 

Attachments

  • second derivative.png
    second derivative.png
    11.3 KB · Views: 134
  • implicit diff.png
    implicit diff.png
    11.3 KB · Views: 141
Mathematics news on Phys.org
The first problem appears to be solved correctly.
second-derivative-png.png


For the second problem, was copied it incorrectly.
implicit-diff-png.png
 
  • Like
Likes Greg Bernhardt
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top