MHB Kamal's Questions via email about Implicit Differentiation

AI Thread Summary
The discussion focuses on implicit differentiation, emphasizing that when differentiating both sides of an equation, the Chain Rule is essential since y is a function of x. The participants derive the first and second derivatives of y with respect to x, ultimately expressing the second derivative in terms of y and x. They also highlight the necessity of applying the Chain Rule when x is a function of another variable, t. The conversation concludes with a note that the first problem was solved correctly, while the second problem was copied incorrectly. Understanding these differentiation techniques is crucial for further mathematical applications.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5525

Since we have this relationship between x and y, as the two sides are equal, so are their derivatives. We just have to remember that as y is a function of x, any function of y is also a function of x, with the inner function "y" composed inside whatever is being told to do to the y. So to differentiate these parts the Chain Rule would be needed. All other rules like the product and quotient rules will still apply as well. Anyway, differentiating both sides with respect to x gives

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\,y + x^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^2 \right) \\ x\,\frac{\mathrm{d}y}{\mathrm{d}x} + 1\,y + 2\,x &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \\ x\,\frac{\mathrm{d}y}{\mathrm{d}x} + y + 2\,x &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\left( 2\,y \right) \\ y + 2\,x &= 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} - x\,\frac{\mathrm{d}y}{\mathrm{d}x} \\ y + 2\,x &= \left( 2\,y - x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{y + 2\,x}{2\,y - x} \end{align*}$

This will be important for later. Going back a step and differentiating both sides with respect to x again we have

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \,\left( y + 2\,x \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( 2\,y - x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \right] \\ \frac{\mathrm{d}y}{\mathrm{d}x} + 2 &= \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} + \left( 2\,\frac{\mathrm{d}y}{\mathrm{d}x} - 1 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{\mathrm{d}y}{\mathrm{d}x} + 2 &= \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} + 2\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 - \frac{\mathrm{d}y}{\mathrm{d}x} \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2 + 2\,\frac{\mathrm{d}y}{\mathrm{d}x} - 2\,\left( \frac{\mathrm{d}y}{\mathrm{d}x}\right) ^2 \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ 1 + \frac{\mathrm{d}y}{\mathrm{d}x} - \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 \right] \end{align*}$

and since we already found that $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y + 2\,x}{2\,y - x } \end{align*}$ that means

$\displaystyle \begin{align*} \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2 \, \left[ 1 + \frac{y + 2\,x}{2\,y - x} - \left( \frac{y + 2\,x}{2\,y - x } \right) ^2 \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{\left( 2\,y - x \right) ^2 + \left( 2\,y - x \right) \left( y + 2\,x \right) - \left( y + 2\,x \right) ^2}{\left( 2\,y - x \right) ^2 } \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{4\,y^2 - 4\,x\,y + x^2 + 2\,y^2 + 4\,x\,y - x\,y - 2\,x^2 - y^2 - 4\,x\,y - 4\,x^2}{\left( 2\,y - x \right) ^2} \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{5\,y^2 - 5\,x\,y - 5\,x^2 }{\left( 2\,y - x \right) ^2} \right] \\ \frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= \frac{10\,\left( y^2 - x\,y - x^2 \right) }{\left( 2\,y - x \right) ^3} \end{align*}$View attachment 5526

Here x is a function of t, so again, to differentiate any x terms, we must use the Chain Rule.

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t} \,\left( x^3 + x\,t^{-1} \right) &= \frac{\mathrm{d}}{\mathrm{d}t} \,\left[ t^2 \left( 1 + x^2 \right) \right] \\ \frac{\mathrm{d}x}{\mathrm{d}t} \, \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x^3 \right) + \frac{\mathrm{d}x}{\mathrm{d}t} \, t^{-1} - x \, t^{-2} &= 2 \, t \, \left( 1 + x^2 \right) + t^2 \, \frac{ \mathrm{d}x }{ \mathrm{d}t } \, \frac{ \mathrm{d} }{\mathrm{d}x} \, \left( 1 + x^2 \right) \\ \frac{\mathrm{d}x}{\mathrm{d}t}\,\left( 3\,x^2 \right) + \frac{\mathrm{d}x}{\mathrm{d}t}\,t^{-1} - x \,t^{-2} &= 2\,t\,\left( 1 + x^2 \right) + t^2\,\frac{\mathrm{d}x}{\mathrm{d}t} \,\left( 2\,x \right) \\ 3\,x^2\,\frac{\mathrm{d}x}{\mathrm{d}t} + t^{-1}\,\frac{\mathrm{d}x}{\mathrm{d}t} - 2\,x\,t^2 \,\frac{\mathrm{d}x}{\mathrm{d}t} &= 2\,t + 2\,x^2\,t + x\,t^{-2} \\ t^2\,\left( 3\,x^2 + t^{-1} - 2\,x\,t^2 \right) \,\frac{\mathrm{d}x}{\mathrm{d}t} &= t^2\,\left( 2\,t + 2\,x^2\,t + x\,t^{-2} \right) \\ \left( 3\,x^2\,t^2 + t - 2\,x\,t^4 \right) \,\frac{\mathrm{d}x}{\mathrm{d}t} &= 2\,t^3 + 2\,x^2\,t^3 + x \\ \frac{\mathrm{d}x}{\mathrm{d}t} &= \frac{2\,t^3 + 2\,x^2\,t^3 + x}{3\,x^2\,t^2 + t - 2\,x\,t^4} \end{align*}$
 

Attachments

  • second derivative.png
    second derivative.png
    11.3 KB · Views: 130
  • implicit diff.png
    implicit diff.png
    11.3 KB · Views: 138
Mathematics news on Phys.org
The first problem appears to be solved correctly.
second-derivative-png.png


For the second problem, was copied it incorrectly.
implicit-diff-png.png
 
  • Like
Likes Greg Bernhardt
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top