MHB Kamal's Questions via email about Implicit Differentiation

Click For Summary
The discussion focuses on implicit differentiation, emphasizing that when differentiating both sides of an equation, the Chain Rule is essential since y is a function of x. The participants derive the first and second derivatives of y with respect to x, ultimately expressing the second derivative in terms of y and x. They also highlight the necessity of applying the Chain Rule when x is a function of another variable, t. The conversation concludes with a note that the first problem was solved correctly, while the second problem was copied incorrectly. Understanding these differentiation techniques is crucial for further mathematical applications.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5525

Since we have this relationship between x and y, as the two sides are equal, so are their derivatives. We just have to remember that as y is a function of x, any function of y is also a function of x, with the inner function "y" composed inside whatever is being told to do to the y. So to differentiate these parts the Chain Rule would be needed. All other rules like the product and quotient rules will still apply as well. Anyway, differentiating both sides with respect to x gives

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( x\,y + x^2 \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left( y^2 \right) \\ x\,\frac{\mathrm{d}y}{\mathrm{d}x} + 1\,y + 2\,x &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\frac{\mathrm{d}}{\mathrm{d}y}\,\left( y^2 \right) \\ x\,\frac{\mathrm{d}y}{\mathrm{d}x} + y + 2\,x &= \frac{\mathrm{d}y}{\mathrm{d}x}\,\left( 2\,y \right) \\ y + 2\,x &= 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} - x\,\frac{\mathrm{d}y}{\mathrm{d}x} \\ y + 2\,x &= \left( 2\,y - x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{y + 2\,x}{2\,y - x} \end{align*}$

This will be important for later. Going back a step and differentiating both sides with respect to x again we have

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \,\left( y + 2\,x \right) &= \frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \left( 2\,y - x \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \right] \\ \frac{\mathrm{d}y}{\mathrm{d}x} + 2 &= \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} + \left( 2\,\frac{\mathrm{d}y}{\mathrm{d}x} - 1 \right) \,\frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{\mathrm{d}y}{\mathrm{d}x} + 2 &= \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} + 2\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 - \frac{\mathrm{d}y}{\mathrm{d}x} \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2 + 2\,\frac{\mathrm{d}y}{\mathrm{d}x} - 2\,\left( \frac{\mathrm{d}y}{\mathrm{d}x}\right) ^2 \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ 1 + \frac{\mathrm{d}y}{\mathrm{d}x} - \left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 \right] \end{align*}$

and since we already found that $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y + 2\,x}{2\,y - x } \end{align*}$ that means

$\displaystyle \begin{align*} \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2 \, \left[ 1 + \frac{y + 2\,x}{2\,y - x} - \left( \frac{y + 2\,x}{2\,y - x } \right) ^2 \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{\left( 2\,y - x \right) ^2 + \left( 2\,y - x \right) \left( y + 2\,x \right) - \left( y + 2\,x \right) ^2}{\left( 2\,y - x \right) ^2 } \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{4\,y^2 - 4\,x\,y + x^2 + 2\,y^2 + 4\,x\,y - x\,y - 2\,x^2 - y^2 - 4\,x\,y - 4\,x^2}{\left( 2\,y - x \right) ^2} \right] \\ \left( 2\,y - x \right) \,\frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= 2\,\left[ \frac{5\,y^2 - 5\,x\,y - 5\,x^2 }{\left( 2\,y - x \right) ^2} \right] \\ \frac{\mathrm{d}^2\,y}{\mathrm{d}x^2} &= \frac{10\,\left( y^2 - x\,y - x^2 \right) }{\left( 2\,y - x \right) ^3} \end{align*}$View attachment 5526

Here x is a function of t, so again, to differentiate any x terms, we must use the Chain Rule.

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}t} \,\left( x^3 + x\,t^{-1} \right) &= \frac{\mathrm{d}}{\mathrm{d}t} \,\left[ t^2 \left( 1 + x^2 \right) \right] \\ \frac{\mathrm{d}x}{\mathrm{d}t} \, \frac{\mathrm{d}}{\mathrm{d}x} \, \left( x^3 \right) + \frac{\mathrm{d}x}{\mathrm{d}t} \, t^{-1} - x \, t^{-2} &= 2 \, t \, \left( 1 + x^2 \right) + t^2 \, \frac{ \mathrm{d}x }{ \mathrm{d}t } \, \frac{ \mathrm{d} }{\mathrm{d}x} \, \left( 1 + x^2 \right) \\ \frac{\mathrm{d}x}{\mathrm{d}t}\,\left( 3\,x^2 \right) + \frac{\mathrm{d}x}{\mathrm{d}t}\,t^{-1} - x \,t^{-2} &= 2\,t\,\left( 1 + x^2 \right) + t^2\,\frac{\mathrm{d}x}{\mathrm{d}t} \,\left( 2\,x \right) \\ 3\,x^2\,\frac{\mathrm{d}x}{\mathrm{d}t} + t^{-1}\,\frac{\mathrm{d}x}{\mathrm{d}t} - 2\,x\,t^2 \,\frac{\mathrm{d}x}{\mathrm{d}t} &= 2\,t + 2\,x^2\,t + x\,t^{-2} \\ t^2\,\left( 3\,x^2 + t^{-1} - 2\,x\,t^2 \right) \,\frac{\mathrm{d}x}{\mathrm{d}t} &= t^2\,\left( 2\,t + 2\,x^2\,t + x\,t^{-2} \right) \\ \left( 3\,x^2\,t^2 + t - 2\,x\,t^4 \right) \,\frac{\mathrm{d}x}{\mathrm{d}t} &= 2\,t^3 + 2\,x^2\,t^3 + x \\ \frac{\mathrm{d}x}{\mathrm{d}t} &= \frac{2\,t^3 + 2\,x^2\,t^3 + x}{3\,x^2\,t^2 + t - 2\,x\,t^4} \end{align*}$
 

Attachments

  • second derivative.png
    second derivative.png
    11.3 KB · Views: 139
  • implicit diff.png
    implicit diff.png
    11.3 KB · Views: 151
Mathematics news on Phys.org
The first problem appears to be solved correctly.
second-derivative-png.png


For the second problem, was copied it incorrectly.
implicit-diff-png.png
 
  • Like
Likes Greg Bernhardt
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K