MHB Karla's question at Yahoo Answers (Intermediate Value Theorem).

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Theorem Value
Click For Summary
The function f(x)=(x-a)^2*(x-b)^2+x is continuous as it is a polynomial. It is established that f(a)=a and f(b)=b, meaning the values at the endpoints are a and b. The value (a+b)/2 lies between a and b, regardless of their order. By the Intermediate Value Theorem, there exists some x in ℝ such that f(x)=(a+b)/2. Thus, the function indeed takes on the value (a+b)/2 for some x.
Mathematics news on Phys.org
Hello Karla,

The function $f(x)=(x-a)^2(x-b)^2+x$ is continuos in $\mathbb{R}$ (polynomical function). Besides, $f(a)=a$ and $f(b)=b$.

But $\dfrac{a+b}{2}$ is the middle point of the segment with endpoints $a$ and $b$ (no matter if $a<b$, $b<a$ or $a=b$) so, $\dfrac{a+b}{2}$ is included between $a$ and $b$. According to the Intermediate Value Theorem, there exists $x\in\mathbb{R}$ such that $f(x)=\dfrac{a+b}{2}$.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
Replies
1
Views
4K