Kepler problem in parabolic coordinates

AI Thread Summary
The discussion centers on solving a complex equation related to the Kepler problem using parabolic coordinates. The user expresses confusion about determining suitable separation constants for their second equation. They provide a specific energy equation involving variables a, b, and constants like l and m. The user requests guidance on how to proceed with solving the problem and asks for the Hamiltonian of the first solution. Clarification on these mathematical concepts is essential for advancing their understanding and solution.
Kate_12
Messages
7
Reaction score
2
Homework Statement
kepler problem
H=1/2m(px^2+py^2+pz^2)-k/(x^2+y^2+z^2)^1/2
with parabolic coordinates (a,b,c)
x=sqrt(ab)cos c
y=sqrt(ab)sin c
z=(a-b)/2
1) rewrite H as a function of new canonical variables (a,b,c, pa,pb,pc)
2) Hamilton-Jacobi equation in this coordinate system turns out to be completely separable. Using the Ansatz S=Wa(a)+Wb(b)+Wc(c)-Et, write the partial differential equation for each Wa, Wb, Wc with suitable separation constants.
Relevant Equations
Hamilton Jacobi equation
I solve (1).
But to solve (2), What should be the suitable separation constants?
I am so confused...

E=2/(m*(a+b)) * (a*(dWa/da)^2+b*(dWb/db)^2-k)+l^2/(2mab)
where l(constant) is pc since c is cyclic.

What should I do to solve the problem?
 
Physics news on Phys.org
if you do not mind could you write down H of your solution 1 ?
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top