Kepler problem in parabolic coordinates

Click For Summary
The discussion centers on solving a complex equation related to the Kepler problem using parabolic coordinates. The user expresses confusion about determining suitable separation constants for their second equation. They provide a specific energy equation involving variables a, b, and constants like l and m. The user requests guidance on how to proceed with solving the problem and asks for the Hamiltonian of the first solution. Clarification on these mathematical concepts is essential for advancing their understanding and solution.
Kate_12
Messages
7
Reaction score
2
Homework Statement
kepler problem
H=1/2m(px^2+py^2+pz^2)-k/(x^2+y^2+z^2)^1/2
with parabolic coordinates (a,b,c)
x=sqrt(ab)cos c
y=sqrt(ab)sin c
z=(a-b)/2
1) rewrite H as a function of new canonical variables (a,b,c, pa,pb,pc)
2) Hamilton-Jacobi equation in this coordinate system turns out to be completely separable. Using the Ansatz S=Wa(a)+Wb(b)+Wc(c)-Et, write the partial differential equation for each Wa, Wb, Wc with suitable separation constants.
Relevant Equations
Hamilton Jacobi equation
I solve (1).
But to solve (2), What should be the suitable separation constants?
I am so confused...

E=2/(m*(a+b)) * (a*(dWa/da)^2+b*(dWb/db)^2-k)+l^2/(2mab)
where l(constant) is pc since c is cyclic.

What should I do to solve the problem?
 
Physics news on Phys.org
if you do not mind could you write down H of your solution 1 ?
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
22
Views
4K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K