Kernel of Linear Map: Show $\ker \phi$ Equation

Click For Summary

Discussion Overview

The discussion revolves around the kernel of a linear map $\phi: V \rightarrow W$, specifically how to express $\ker \phi$ in terms of a basis of $V$ and the linear combinations of the images of that basis under $\phi$. Participants explore the implications of the definitions involved and the relationships between the elements of the kernel and the linear combinations of the basis vectors.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes that the kernel can be expressed as a set of linear combinations of basis vectors of $V$ based on the condition that their images under $\phi$ sum to zero.
  • Another participant confirms the correctness of the initial reasoning regarding the kernel and the basis representation.
  • A participant questions the definition of $\mathbf L$ and its relevance to the kernel's characterization.
  • There is a discussion about whether the assumption regarding the form of $v$ was necessary, with some participants asserting that $(\lambda_1, \ldots, \lambda_n)^T$ is not an element of $V$ and should not be treated as such.
  • Clarification is sought on the relationship between $v \in \ker \phi$ and the condition involving $\mathbf L$, with participants discussing the implications of this condition for the representation of $v$.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the initial reasoning regarding the kernel, but there is some uncertainty about the necessity of certain assumptions and the interpretation of the condition involving $\mathbf L$. The discussion remains somewhat unresolved regarding the implications of these interpretations.

Contextual Notes

There are limitations regarding the assumptions made about the representation of $v$ and its relationship to the kernel, as well as the definitions involved in the characterization of $\mathbf L$. These aspects are not fully resolved in the discussion.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $1\leq n,m\in \mathbb{N}$, $V:=\mathbb{R}^n$ and $(b_1, \ldots , b_n)$ a basis of $V$. Let $W:=\mathbb{R}^m$ and let $\phi:V\rightarrow W$ be a linear map.
Show that $$\ker \phi =\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$$

I have done the following:

Let $v\in V$. Since $(b_1, \ldots , b_n)$ is a basis of $V$, we have that $\displaystyle{v=\sum_{i=1}^n\lambda_ib_i}$.

Then we have that $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W$$

Is this correct so far? (Wondering)
 
Physics news on Phys.org
mathmari said:
Is this correct so far?

Hey mathmari!

Yep. Correct. (Nod)

Btw, what is $\mathbf L$? (Wondering)
 
Klaas van Aarsen said:
Yep. Correct. (Nod)

Btw, what is $\mathbf L$? (Wondering)

The definition is: $$\mathbf L=\left \{(\lambda_1, \ldots , \lambda_k)^T\in \mathbb{R}^k\mid \sum_{i=1}^k\lambda_iv_i=0\right \}$$

So we get $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W\iff (\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$$

But to get the desired result it has to be $v=(\lambda_1, \ldots , \lambda_n)^T$, or not? So did we have to take at the beginning this assumption? (Wondering)
 
mathmari said:
The definition is: $$\mathbf L=\left \{(\lambda_1, \ldots , \lambda_k)^T\in \mathbb{R}^k\mid \sum_{i=1}^k\lambda_iv_i=0\right \}$$

So we get $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W\iff (\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$$

Yep. (Nod)

mathmari said:
But to get the desired result it has to be $v=(\lambda_1, \ldots , \lambda_n)^T$, or not? So did we have to take at the beginning this assumption?

No. $(\lambda_1, \ldots , \lambda_n)^T$ is not an element of $V$, is it? And it shouldn't be. (Shake)
It's not an element of the kernel either.
Don't we already have the desired result? (Wondering)
What do you think is missing?
 
Klaas van Aarsen said:
Yep. (Nod)
No. $(\lambda_1, \ldots , \lambda_n)^T$ is not an element of $V$, is it? And it shouldn't be. (Shake)
It's not an element of the kernel either.
Don't we already have the desired result? (Wondering)
What do you think is missing?

Ohh now I think I got it. I thought we have to show that $v\in \ker \phi \iff v\in L$, but $(\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$ is just the condition that $v$ is in $\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$, right? (Wondering)

So from $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W\iff (\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$$ we have that $v=\sum_{i=1}^n\lambda_ib_i$ is in the kernel iff $(\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$ which means that $v=\sum_{i=1}^n\lambda_ib_i$ is contained in $\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$.

Is this correct? (Wondering)
 
mathmari said:
Ohh now I think I got it. I thought we have to show that $v\in \ker \phi \iff v\in L$, but $(\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$ is just the condition that $v$ is in $\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$, right?

So from $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W\iff (\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$$ we have that $v=\sum_{i=1}^n\lambda_ib_i$ is in the kernel iff $(\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$ which means that $v=\sum_{i=1}^n\lambda_ib_i$ is contained in $\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$.

Is this correct?

Yep. All correct. (Nod)
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K