MHB Kernel of Linear Map: Show $\ker \phi$ Equation

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $1\leq n,m\in \mathbb{N}$, $V:=\mathbb{R}^n$ and $(b_1, \ldots , b_n)$ a basis of $V$. Let $W:=\mathbb{R}^m$ and let $\phi:V\rightarrow W$ be a linear map.
Show that $$\ker \phi =\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$$

I have done the following:

Let $v\in V$. Since $(b_1, \ldots , b_n)$ is a basis of $V$, we have that $\displaystyle{v=\sum_{i=1}^n\lambda_ib_i}$.

Then we have that $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W$$

Is this correct so far? (Wondering)
 
Physics news on Phys.org
mathmari said:
Is this correct so far?

Hey mathmari!

Yep. Correct. (Nod)

Btw, what is $\mathbf L$? (Wondering)
 
Klaas van Aarsen said:
Yep. Correct. (Nod)

Btw, what is $\mathbf L$? (Wondering)

The definition is: $$\mathbf L=\left \{(\lambda_1, \ldots , \lambda_k)^T\in \mathbb{R}^k\mid \sum_{i=1}^k\lambda_iv_i=0\right \}$$

So we get $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W\iff (\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$$

But to get the desired result it has to be $v=(\lambda_1, \ldots , \lambda_n)^T$, or not? So did we have to take at the beginning this assumption? (Wondering)
 
mathmari said:
The definition is: $$\mathbf L=\left \{(\lambda_1, \ldots , \lambda_k)^T\in \mathbb{R}^k\mid \sum_{i=1}^k\lambda_iv_i=0\right \}$$

So we get $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W\iff (\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$$

Yep. (Nod)

mathmari said:
But to get the desired result it has to be $v=(\lambda_1, \ldots , \lambda_n)^T$, or not? So did we have to take at the beginning this assumption?

No. $(\lambda_1, \ldots , \lambda_n)^T$ is not an element of $V$, is it? And it shouldn't be. (Shake)
It's not an element of the kernel either.
Don't we already have the desired result? (Wondering)
What do you think is missing?
 
Klaas van Aarsen said:
Yep. (Nod)
No. $(\lambda_1, \ldots , \lambda_n)^T$ is not an element of $V$, is it? And it shouldn't be. (Shake)
It's not an element of the kernel either.
Don't we already have the desired result? (Wondering)
What do you think is missing?

Ohh now I think I got it. I thought we have to show that $v\in \ker \phi \iff v\in L$, but $(\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$ is just the condition that $v$ is in $\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$, right? (Wondering)

So from $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W\iff (\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$$ we have that $v=\sum_{i=1}^n\lambda_ib_i$ is in the kernel iff $(\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$ which means that $v=\sum_{i=1}^n\lambda_ib_i$ is contained in $\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$.

Is this correct? (Wondering)
 
mathmari said:
Ohh now I think I got it. I thought we have to show that $v\in \ker \phi \iff v\in L$, but $(\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$ is just the condition that $v$ is in $\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$, right?

So from $$v\in \ker \phi \iff \phi (v)=0_W \iff \phi \left (\sum_{i=1}^n\lambda_ib_i\right )=0_W \iff \sum_{i=1}^n\lambda_i\phi (b_i)=0_W\iff (\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$$ we have that $v=\sum_{i=1}^n\lambda_ib_i$ is in the kernel iff $(\lambda_1, \ldots , \lambda_n)^T\in \mathbf L$ which means that $v=\sum_{i=1}^n\lambda_ib_i$ is contained in $\left \{\sum_{i=1}^n\lambda_ib_i\mid \begin{pmatrix}\lambda_1\\ \vdots \\ \lambda_n\end{pmatrix}\in \textbf{L}(\phi (b_1), \ldots , \phi (b_n))\right \}$.

Is this correct?

Yep. All correct. (Nod)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Replies
23
Views
2K
Replies
12
Views
2K
Replies
24
Views
2K
Replies
24
Views
4K
Replies
10
Views
2K
Replies
4
Views
1K
Replies
4
Views
2K
Back
Top