I Kerr Black Hole: Superradiance Flux - Show Negative when 0<ω<mΩH

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
b) Show that the time averaged flux of ##J^a = -{T^a}_b \xi^b## across the horizon of a Kerr black hole is negative when ##0 \leq \omega \leq m\Omega_H ##. Given that ##dF = 0## i.e. ##\nabla_{[a} F_{bc]} = 0##,\begin{align*}
-2\nabla_{[a} (F_{b]c} w^c) &= F_{ac} \nabla_b w^c + F_{cb} \nabla_a w^c - w^c (\nabla_b F_{ca} + \nabla_a F_{bc}) \\
&= F_{ac} \nabla_b w^c + F_{cb} \nabla_a w^c + w^c \nabla_c F_{ab} \\
&= L_w F_{ab}
\end{align*}It is hinted to use this equation to relate ##F_{ab} \xi^b## to ##F_{ab} \chi^b##, but how? The tensor ##T## is ##T_{ab} = \nabla_a \phi \nabla_b \phi - \dfrac{1}{2} g_{ab} (\nabla_c \phi \nabla^c \phi + m^2 \phi^2)## so the time-averaged flux is ##\langle J_{a} (-\chi^a) \rangle = \langle (\chi^a \nabla_a \phi)(\xi^b \nabla_b \phi) \rangle##

edit: ##\xi = \dfrac{\partial}{\partial t}## and ##\chi = \dfrac{\partial}{\partial \phi}##
 
Physics news on Phys.org
Haha, well I'm glad I'm not the only one who found the hint to be cryptic. 😂
Can you see how to do it? I might try again tomorrow but I've spent slightly too long fiddling around, lol.
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...

Similar threads

Replies
1
Views
1K
Replies
21
Views
2K
Replies
4
Views
1K
Replies
16
Views
3K
Replies
8
Views
3K
Replies
39
Views
13K
Back
Top