MHB Kinematics Application Question - Physics 11u

Click For Summary
SUMMARY

Maggie and Judy both completed a 100-meter race in 10.2 seconds, with Maggie accelerating uniformly for 2.00 seconds and Judy for 3.00 seconds. The calculated acceleration for Maggie is 5.43 m/s², resulting in a maximum speed of 10.87 m/s, while Judy's acceleration is 3.83 m/s², leading to a maximum speed of 11.49 m/s. At the 6.00-second mark, Judy was ahead of Maggie, confirming the differences in their acceleration and maximum speeds.

PREREQUISITES
  • Understanding of kinematic equations for uniformly accelerated motion
  • Familiarity with concepts of acceleration and maximum speed
  • Ability to manipulate algebraic equations with multiple variables
  • Basic knowledge of physics principles related to motion
NEXT STEPS
  • Study kinematic equations in detail, focusing on displacement and acceleration
  • Learn how to solve systems of equations with multiple unknowns
  • Explore practical applications of acceleration in sports science
  • Investigate the effects of different acceleration times on race outcomes
USEFUL FOR

Students studying physics, particularly those focusing on kinematics, as well as educators and coaches interested in the dynamics of sprinting performance.

Wild ownz al
Messages
30
Reaction score
0
In a 100 meter race, Maggie and Judy cross the finish line in a dead heat, both taking 10.2 seconds. Accelerating uniformly Maggie took 2.00 seconds and Judy 3.00 seconds to attain maximum speed, which they maintained for the rest of the race.

a)What was the acceleration of each sprinter?
b)What were their respective maximum speeds?
c)Which sprinter was ahead at the 6.00-second mark, and by how much?
 
Mathematics news on Phys.org
Wild ownz al said:
In a 100 meter race, Maggie and Judy cross the finish line in a dead heat, both taking 10.2 seconds. Accelerating uniformly Maggie took 2.00 seconds and Judy 3.00 seconds to attain maximum speed, which they maintained for the rest of the race.

a)What was the acceleration of each sprinter?
b)What were their respective maximum speeds?
c)Which sprinter was ahead at the 6.00-second mark, and by how much?

assuming both started from rest, base equation for motion of each runner ...

total displacement = acceleration displacement + constant speed displacement

---------------------------------------------------------------------------------------

$100 = \dfrac{1}{2}a_m \cdot 2^2 + v_{fm} \cdot 8.2$ where $v_{fm} = a_m \cdot 2$

$100 = \dfrac{1}{2}a_j \cdot 3^2 + v_{fj} \cdot 7.2$ where $v_{fj} = a_j \cdot 3$

these equations should get you both accelerations and their respective final speeds ... can you take it from here?
 
skeeter said:
assuming both started from rest, base equation for motion of each runner ...

total displacement = acceleration displacement + constant speed displacement

---------------------------------------------------------------------------------------

$100 = \dfrac{1}{2}a_m \cdot 2^2 + v_{fm} \cdot 8.2$ where $v_{fm} = a_m \cdot 2$

$100 = \dfrac{1}{2}a_j \cdot 3^2 + v_{fj} \cdot 7.2$ where $v_{fj} = a_j \cdot 3$

these equations should get you both accelerations and their respective final speeds ... can you take it from here?

These equations look great but how am I suppose to solve for the acceleration and V-final with two unknown variables in the formulas?
 
Wild ownz al said:
These equations look great but how am I suppose to solve for the acceleration and V-final with two unknown variables in the formulas?

substitute $2a_m$ for $v_{fm}$ in the first equation

substitute $3a_j$ for $v_{fj}$ in the second equationeach equation will then have a single unknown
 
Ok using that logic I got the following:

For maggie:

100=1/2am(2^2)+(2am)(8.2)

am=5.43m/s^2
Vfm=10.87m/s

For Judy:

100=1/2aj+(3aj)(7.2)

aj=3.83m/s^2
Vfj=12.00m/s

Is this correct?
 
Wild ownz al said:
Ok using that logic I got the following:

For maggie:

100=1/2am(2^2)+(2am)(8.2)

am=5.43m/s^2
Vfm=10.87m/s

For Judy:

100=1/2aj(3^2)+(3aj)(7.2)

aj=3.83m/s^2
Vfj= 3aj ...

Is this correct?

$v_f$ for maggie is ok ... recheck your calculation for $v_f$ for judy
 
Judy's Vf is 11.49m/s?

aj = 3.83m/s^2

Vfj = 3aj
Vfj=3(3.83m/s^2)
Vfj=11.49m/s
 
Wild ownz al said:
Judy's Vf is 11.49m/s?

aj = 3.83m/s^2

Vfj = 3aj
Vfj=3(3.83m/s^2)
Vfj=11.49m/s

yep
 

Similar threads

Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
7K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
5K
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
10K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
7K
  • · Replies 1 ·
Replies
1
Views
5K