Bling Fizikst
- 119
- 16
- Homework Statement
- A helicopter turns in a horizontal circle with ##O## moving in a circle of radius ##R## at speed ##v##, which is increasing at the rate of ##\dot{v}## , ##t=\frac{\pi}{4p}## . The helicopter blades osscilate with ##\theta=\theta_{\circ}+\theta_1 \sin pt## . Find ##\vec{v_{BO}} ,\vec{v_{AO}}## at ##t=\frac{\pi}{4p}##
- Relevant Equations
- below
We know $$\vec{v}_{B/O} \equiv \vec{v}_{B/1}$$ $$v_{O/F} = v\hat{e}_t$$ $$a_{O/F} = \dot{v}\hat{e}_t + \frac{v^2}{R} \hat{e}_n$$\$$\omega_{1/F} = -\omega \hat{j}$$ $$\omega_{2/1} = \dot{\theta} \hat{i}$$Using velocity transfer relations, $$v_{B/F} = v_{B/1} + v_{O/F} + \omega_{1/F} \times OB$$ $$v_{B/F} = v_{B/2} + v_{A/F} + \omega_{2/F} \times AB$$ $$v_{A/F} = v_{A/1} + v_{O/F} + \omega_{1/F} \times OA$$ By additivity of angular velocities, we can find ##\omega_{2/F} ##.Since ## v_{B/2} = 0##and ## v_{A/1} = 0## , we get $$v_{B/1} = \hat{i} \left(-\omega a + \omega b \sin\theta - \omega \theta_1 b p \sin(pt) \right) + \hat{j} \left(\theta_1 b p \sin(pt) \sin\theta\right) + \hat{k} \left(\theta_1 b p \sin\theta \sin(pt)\right)$$
Last edited: