Kinetic energy in center of mass reference frame

AI Thread Summary
The discussion focuses on the kinetic energy of a two-mass system in both the center of mass (CM) reference frame and another inertial frame (S). It establishes that the kinetic energy in frame S can be expressed in terms of the kinetic energy in the CM frame plus a term related to the center of mass velocity. The key point is that if there are no external forces acting on the system, the velocity of the center of mass remains constant, confirming that the kinetic energy difference is a constant. The conversation highlights the importance of understanding these concepts for problem-solving in physics, illustrating that the process of reasoning through questions can be beneficial for others. Overall, the interaction emphasizes the relationship between kinetic energy and reference frames in classical mechanics.
zenterix
Messages
774
Reaction score
84
Homework Statement
In MIT OCW's 8.01 "Classical Mechanics" textbook, there is a derivation to show that change in kinetic energy is independent of the choice of relatively inertial reference frames.
Relevant Equations
##K=\frac{1}{2}mv^2##
Here is the relevant chapter.

Suppose we have two masses ##m_1## and ##m_2## interacting via some force, and two reference frames, ##S## and ##CM##. The ##CM## frame is the center of mass reference frame. The origin of this reference frame is at the location of the center of mass of the system.

The position of particle ##j## in frame ##S## is ##\vec{r}_j## and in frame ##CM## is ##\vec{r}_{j}'##.

We have

$$\vec{r}_j=\vec{r}_j'+\vec{r}_{cm}$$

$$\vec{v}_j=\vec{v}_j'+\vec{v}_{cm}$$

Kinetic energy in the CM frame can be shown to be

$$K_{cm}=\frac{1}{2}(m_1v_1'^2+m_2v_2'^2)=\frac{1}{2}\mu\vec{v}_{1,2}^2$$

where ##\mu=\frac{m_1m_2}{m_1+m_2}## and ##\vec{v}_{1,2}=\vec{v}_1-\vec{v}_2##.

My question is about kinetic energy in frame ##S##.

We start with

$$K_S=\frac{1}{2}(m_1v_1^2+m_2v_2^2)$$

And after subbing in ##v_j^2=\vec{v}_j\cdot\vec{v_j}=(\vec{v}_j'+\vec{v}_cm)\cdot(\vec{v}_j'+\vec{v}_{cm})## we end up with

$$K_S=K_{cm}+\frac{1}{2}(m_1+m_2)v_{cm}^2$$

Now, if ##v_{cm}## is constant then ##K_S## differs from ##K_{cm}## by a constant.

But how do we know that ##v_{cm}## is constant?

After writing this up I think I figured out the answer.

There are no external forces on the system of two particles. Thus, the acceleration of the center of mass is zero. Thus the velocity of the center of mass is constant.
 
Physics news on Phys.org
Since I already solved the question, I think this question can be deleted.
 
zenterix said:
Since I already solved the question, I think this question can be deleted.
Why? This is not only about you. It's a good illustration of how one grapples with a question and reasons out the answer. Others might profit from it by seeing that, more often than not, getting to the answer is not as smooth a process as textbooks want us to believe.
 
  • Like
Likes sakib71, zenterix and MatinSAR
zenterix said:
Since I already solved the question, I think this question can be deleted.
You can also get the result without considering the CoM frame. If two inertial frames are related by some relative velocity ##\vec v##, then the KE of mass ##m_1## is related by:
$$KE_1' = \frac 1 2 m_1v_1'^2 = \frac 1 2 m_1|\vec v_1 +\vec v|^2$$$$= \frac 1 2 m_1(v_1^2 + 2\vec v_1\cdot \vec v + v^2)$$$$= KE_1 + \vec p_1 \cdot \vec v + \frac 1 2 m_1v^2$$Hence, the change in KE is:
$$\Delta KE_1' = \Delta KE_1 + \Delta \vec p_1 \cdot \vec v$$Hence, for a system of (any number of) particles:
$$\Delta KE' = \Delta KE + \Delta \vec P \cdot \vec v$$So, if the total momentum of the system is conserved (##\Delta \vec P = 0##), then the change in KE is independent of the inertial reference frame.
 
  • Like
Likes zenterix and TSny
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top