- #1
Nicodemus Rex
- 13
- 0
1200lb total vehicle weight
800lb total flywheel mass [4x200ea]
Diameter 18.75"
Flywheel RPM 3500 [120v electric motor plugged into wall]
Pulley to drive wheel at 1:1 [6"pulley] or to 12' pulley
Please help write the end of this story before I start. This is a "rev up" car built for big kids, in that it's plugged into the wall to spin up the flyweels [x4] to 3500 RPM. These RPM are transferred to the ground using kevlar belts and pulleys to the tire.
I pull the lawnmower style belt clutch and dump the stored kinetic energy to the back tires directly onto the spines of my enemies. How many nemesis can I smear on a charge?
Less useful answers might be -
How would you rate the potential power to compare it to a 1/4 mile car? Newtons and spinning and procession mathubations aside, I want to know if the power is delivered to the tires how fast will I get in 1/4 or a mile based on the stored power and weight of the vehicle.
I have done the calculations on every link in this forum, and used every calculator available that can translate from meters per second to dangles per minute. I realize aerodynamics and tire limitations are there, that's a real world penalty I don't need addressed either. What I have not been able to come to grips with is whether I'm working with enough stored energy or not. The force calculators all say that with the Newtons available the vehicle should do over 3000mph. That's horsedirt. I'm off and totally wrong. Before I build framing I have to know how much of a bomb I'm driving.
I have searched a month for the answer, even asked my NASA guy before growing the stones to ask here. Please think in the context of a flywheel toy that a grown up sits in, trying only to go super fast for 8 to 10 seconds or less.
Forgive me if the answer is posted somewhere, I promise no answers I've seen help me so far. Thank you in advance for any help or suggestions you have.
800lb total flywheel mass [4x200ea]
Diameter 18.75"
Flywheel RPM 3500 [120v electric motor plugged into wall]
Pulley to drive wheel at 1:1 [6"pulley] or to 12' pulley
Please help write the end of this story before I start. This is a "rev up" car built for big kids, in that it's plugged into the wall to spin up the flyweels [x4] to 3500 RPM. These RPM are transferred to the ground using kevlar belts and pulleys to the tire.
I pull the lawnmower style belt clutch and dump the stored kinetic energy to the back tires directly onto the spines of my enemies. How many nemesis can I smear on a charge?
Less useful answers might be -
How would you rate the potential power to compare it to a 1/4 mile car? Newtons and spinning and procession mathubations aside, I want to know if the power is delivered to the tires how fast will I get in 1/4 or a mile based on the stored power and weight of the vehicle.
I have done the calculations on every link in this forum, and used every calculator available that can translate from meters per second to dangles per minute. I realize aerodynamics and tire limitations are there, that's a real world penalty I don't need addressed either. What I have not been able to come to grips with is whether I'm working with enough stored energy or not. The force calculators all say that with the Newtons available the vehicle should do over 3000mph. That's horsedirt. I'm off and totally wrong. Before I build framing I have to know how much of a bomb I'm driving.
I have searched a month for the answer, even asked my NASA guy before growing the stones to ask here. Please think in the context of a flywheel toy that a grown up sits in, trying only to go super fast for 8 to 10 seconds or less.
Forgive me if the answer is posted somewhere, I promise no answers I've seen help me so far. Thank you in advance for any help or suggestions you have.