MHB Lachlan's question via email about the Bisection Method

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Consider the equation $\displaystyle 8\cos{\left( x \right) } = \mathrm{e}^{-x/7} $.

Perform four iterations of the Bisection Method to find an approximate solution in the interval $\displaystyle x \in \left[ 1.35, 1.6 \right] $.

The Bisection Method is used to solve equations of the form $\displaystyle f\left( x \right) = 0 $, so we need to rewrite the equation as $\displaystyle 8\cos{ \left( x \right) } - \mathrm{e}^{-x/7} = 0 $. Thus $\displaystyle f\left( x \right) = 8\cos{ \left( x \right) } - \mathrm{e}^{-x/7} $.

I have used my CAS to solve this problem. Note that the calculator must be in Radian mode.

View attachment 9640

View attachment 9641

View attachment 9642

So our solution is $\displaystyle x \approx c_4 = 1.45938 $.
 

Attachments

  • bm1.jpg
    bm1.jpg
    23.4 KB · Views: 144
  • bm2.jpg
    bm2.jpg
    21.9 KB · Views: 149
  • bm3.jpg
    bm3.jpg
    21.6 KB · Views: 125
Mathematics news on Phys.org
I checked your calculations using Excel, and they agree. After a couple more iterations I get x≈1,4701171875.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top