A Lame parameter mu = shear modulus derivation (rogue factor of 2)

AI Thread Summary
The discussion centers on the derivation of the shear modulus G being equal to the Lame parameter μ. The original poster correctly applies the linear, symmetric, isotropic stress-strain formula but mistakenly concludes that G equals 2μ. The key correction involves recognizing that the true shear strain is half of the engineering shear strain, which is crucial for tensor calculations. This adjustment leads to the correct relationship, μ = G. Understanding this distinction is essential for accurate material property analysis.
Twigg
Science Advisor
Gold Member
Messages
893
Reaction score
483
Hello,

I am trying and failing to derive that the shear modulus ##G## is equal to the Lame parameter ##\mu##. I start with the linear, symmetric, isotropic stress-strain formula: $$\sigma = \lambda \mathrm{tr}(\epsilon) \mathrm{I} + 2\mu \epsilon$$ I then substitute a simple (symmetric) shear strain: $$\epsilon = \epsilon_{xy} (\hat{x} \otimes \hat{y} + \hat{y} \otimes \hat{x} )$$ But then I end up with $$\sigma_{xy} = 2\mu \epsilon_{xy}$$ or equivalently $$G = 2\mu$$ What did I goof up?

Thanks!
 
Physics news on Phys.org
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top