Laplace expansion of the inner product (Geometric Algebra)

Click For Summary
SUMMARY

The discussion centers on proving the identity known as the "Laplace expansion of the inner product" in geometric algebra, specifically the equation ##\vec {a} \cdot (\vec {b} \wedge \vec {C_r}) = \vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \wedge (\vec {a} \cdot \vec {C_r})##. The participants utilize various equations, including Equation (1a) and Equation (3), to manipulate the terms and approach the proof. The confusion arises around the relationship between the geometric product and the outer product, particularly regarding the term ##\vec {b} \vec {a} \cdot \vec {C_r}## and its implications in the proof.

PREREQUISITES
  • Understanding of geometric algebra concepts, including vectors and r-blades.
  • Familiarity with the inner product and outer product operations.
  • Knowledge of the properties of the geometric product.
  • Ability to manipulate algebraic equations involving vectors and blades.
NEXT STEPS
  • Study the properties of the geometric product in geometric algebra.
  • Learn about the applications of the wedge product in higher-dimensional spaces.
  • Explore proofs of other identities in geometric algebra for deeper understanding.
  • Investigate the implications of the Laplace expansion in physics and engineering contexts.
USEFUL FOR

Students and researchers in mathematics, physics, and engineering who are working with geometric algebra, particularly those interested in vector calculus and its applications in higher dimensions.

NoPhysicsGenius
Messages
58
Reaction score
0

Homework Statement



Prove that ##\vec {a} \cdot (\vec {b} \wedge \vec {C_r}) = \vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \wedge (\vec {a} \cdot \vec {C_r})##.

Note that ##\vec {a}## is a vector, ##\vec {b}## is a vector, and ##\vec {C_r}## is an r-blade with ##r > 0##.

Also, the dot denotes the inner product, the wedge denotes the outer product, and no operator between vectors (or blades) denotes the geometric product.

Finally, the identity to be proven can be called the "Laplace expansion of the inner product".

Homework Equations



Equation (1a): ##\vec {a} \cdot \vec {b} = \frac {1}{2} (\vec {a} \vec {b} + \vec {b} \vec {a}) ##
## \Rightarrow ##
Equation (1b): ##\vec {a} \vec {b} = - \vec {b} \vec {a} + 2 \vec {a} \cdot \vec {b}##

Equation (2): ##\vec {a} \cdot \vec {A_r} = \frac {1}{2} (\vec {a} \vec {A_r} - (-1)^r \vec {A_r} \vec {a}) ##

Equation (3): ##\vec {b} \vec {C_r} = \vec {b} \cdot \vec {C_r} + \vec {b} \wedge \vec {C_r} ##

The Attempt at a Solution



By Equation (1a), we have ##\vec {a} \vec {b} \vec {C_r} = (- \vec {b} \vec {a} + 2 \vec {a} \cdot \vec {b}) \vec {C_r} = - \vec {b} \vec {a} \vec {C_r} + 2 \vec {a} \cdot \vec {b} \vec {C_r}##

Note that Equation (2) implies ##2 \vec {a} \cdot \vec {C_r} = \vec {a} \vec {C_r} - (-1)^r \vec {C_r} \vec {a} \Rightarrow \vec {a} \vec {C_r} = (-1)^r \vec {C_r} \vec {a} + 2 \vec {a} \cdot \vec {C_r} ##

Therefore, ##\vec {a} \vec {b} \vec {C_r} = - \vec {b} [(-1)^r \vec {C_r} \vec {a} + 2 \vec {a} \cdot \vec {C_r}] + 2 \vec {a} \cdot \vec {b} \vec {C_r} ##
##\Rightarrow \frac {1}{2} \vec {a} \vec {b} \vec {C_r} = - \frac {1}{2} \vec {b} [(-1)^r \vec {C_r} \vec {a} + 2 \vec {a} \cdot \vec {C_r}] + \vec {a} \cdot \vec {b} \vec {C_r} ##
##\Rightarrow \vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \vec {a} \cdot \vec {C_r} = \frac {1}{2} [\vec {a} (\vec {b} \vec {C_r}) - (-1)^r (\vec {b} \vec {C_r}) \vec {a}] ##

Using the reverse of Equation (2), we get ##\vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \vec {a} \cdot \vec {C_r} = \vec {a} \cdot (\vec {b} \vec {C_r}) ##

Applying Equation (3), we have ##\vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \vec {a} \cdot \vec {C_r} = \vec {a} \cdot (\vec {b} \cdot \vec {C_r} + \vec {b} \wedge \vec {C_r}) = ##
##\vec {a} \cdot (\vec {b} \cdot \vec {C_r}) + \vec {a} \cdot (\vec {b} \wedge \vec {C_r})##

##\Rightarrow \vec {a} \cdot (\vec {b} \wedge \vec {C_r}) = \vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \vec {a} \cdot \vec {C_r} - \vec {a} \cdot (\vec {b} \cdot \vec {C_r}) ##

This is where I got stuck. Somehow, the r-vector part of this last equation gives the desired identity; but I don't know how...
 
Physics news on Phys.org
With equation (3) you directly get, that the statement is equivalent to ##\vec{a}\cdot (\vec{b}\cdot \vec{C_r})=\vec{b}\wedge (\vec{a}\cdot\vec{C_r})\,##?
 
fresh_42 said:
With equation (3) you directly get, that the statement is equivalent to ##\vec{a}\cdot (\vec{b}\cdot \vec{C_r})=\vec{b}\wedge (\vec{a}\cdot\vec{C_r})\,##?

I am confused. To finish my proof, I must show that ##- \vec {b} \wedge ( \vec {a} \cdot \vec{C_r} ) = - \vec {b} \vec {a} \cdot \vec {C_r} - \vec {a} \cdot ( \vec {b} \cdot \vec {C_r} ) ##
##\Rightarrow \vec {b} \wedge ( \vec {a} \cdot \vec{C_r} ) = \vec {b} \vec {a} \cdot \vec {C_r} + \vec {a} \cdot ( \vec {b} \cdot \vec {C_r} ) ##.

Does ##\vec {b} \vec {a} \cdot \vec {C_r} ## equal zero?
 
NoPhysicsGenius said:
I am confused. To finish my proof, I must show that ##- \vec {b} \wedge ( \vec {a} \cdot \vec{C_r} ) = - \vec {b} \vec {a} \cdot \vec {C_r} - \vec {a} \cdot ( \vec {b} \cdot \vec {C_r} ) ##
##\Rightarrow \vec {b} \wedge ( \vec {a} \cdot \vec{C_r} ) = \vec {b} \vec {a} \cdot \vec {C_r} + \vec {a} \cdot ( \vec {b} \cdot \vec {C_r} ) ##.

Does ##\vec {b} \vec {a} \cdot \vec {C_r} ## equal zero?
I don't know. I simply used your equation (3) to get rid of the geometric product in your assertion and ended up with one which is likely wrong. The only other thing I used was distributivity of the dot product.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
1
Views
1K