LCC 206 {r3} integral rational expression

Click For Summary
SUMMARY

The integral of the rational expression $\int \frac{3x}{\sqrt{x+4}}\,dx$ is computed using u-substitution, resulting in $I=2\left(x-8\right)\sqrt{x+4}+C$. The substitution involves letting $u=x+4$, which simplifies the integral to $3\int \frac{u-4}{\sqrt{u}} \, du$. The discussion also explores the potential use of trigonometric substitution, particularly when dealing with functions under radicals, but concludes that the u-substitution method is the most concise and effective approach.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with u-substitution technique
  • Knowledge of trigonometric substitution methods
  • Ability to manipulate algebraic expressions and radicals
NEXT STEPS
  • Study advanced integration techniques, including integration by parts
  • Learn about trigonometric substitution in depth, focusing on specific forms
  • Explore the application of the Fundamental Theorem of Calculus
  • Practice solving integrals involving rational functions and radicals
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to enhance their skills in solving rational expressions and integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {r3} integrarl rational expression}$
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄 🏄🏄
 
Physics news on Phys.org
Re: LCC 206 {r3} integrarl rational expression

karush said:
$\tiny\text{LCC 206 {r3} integrarl rational expression}$
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄 🏄🏄

I think you have used the most concise method. Well done :)
 
karush said:
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
Trig substitution is appropriate when we have functiions
with the forms: u^2 - a^2,\;u^2+a^2,\;a^2-u^2

If there is a linear function under the radical,
I often let u equal the entire radical
.
\text{Let }u \;=\;\sqrt{x+4}\quad\Rightarrow\quad x \,=\,u^2-4 \quad\Rightarrow\quad du \,=\,2u\,du

\text{Substitute: }\;\int \frac{3(u^2-4)\cdot 2u\,du}{u} \;=\;6\int(u^2-4)\,du

. . . =\;\;6\left(\frac{u^3}{3} - 4u\right) + C \;\;=\;\;2u^3 - 24u + C \;\;=\;\;2u(u^2-12) + C

\text{Back-substitute: }\;2\sqrt{x+4}(x+4-12) + C \;\;=\;\; 2\sqrt{x+4}(x-8)+C


 
$$\int\dfrac{3x}{\sqrt{x+4}}\,dx$$

$$x=4\sinh^2(u),\quad u=\sinh^{-1}\left(\dfrac{\sqrt x}{2}\right)$$

$$dx=8\sinh(u)\cosh(u)\,du$$

$$\int\dfrac{3\cdot4\sinh^2(u)\cdot8\sinh(u)\cosh(u)\,du}{2\cosh(u)}$$

$$=48\int\sinh^3(u)\,du=48\int(\cosh^2(u)-1)\sinh(u)\,du$$

$$w=\cosh(u),\quad dw=\sinh(u)\,du$$

$$48\int w^2-1\,dw=16w^3-48w+C$$

$$(*)\,\Leftrightarrow16w^3-48w\Rightarrow16\left(\dfrac{\sqrt{x+4}}{2}\right)^3-24\sqrt{x+4}+C$$

$$\int\dfrac{3x}{\sqrt{x+4}}\,dx=2(x-8)\sqrt{x+4}+C$$

$(*)$ Recall that $\cosh\left(\sinh^{-1}(z)\right)=\sqrt{z^2+1}$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K