LCC 206 {r3} integral rational expression

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $\int \frac{3x}{\sqrt{x+4}}\,dx$. Participants explore various methods of integration, including u-substitution and trigonometric substitution, while discussing the effectiveness of these approaches.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a solution using u-substitution, leading to the result $I=2\left(x-8\right)\sqrt{x+4}+C$ and questions whether trigonometric substitution might yield a better result.
  • Another participant agrees with the method used, suggesting it is concise and effective.
  • A different approach using trigonometric substitution is introduced, where $x=4\sinh^2(u)$ is proposed, leading to a complex transformation and ultimately arriving at the same result $I=2\left(x-8\right)\sqrt{x+4}+C$.
  • Participants discuss the appropriateness of trigonometric substitution, noting it is suitable for certain forms under the radical.

Areas of Agreement / Disagreement

While there is agreement on the final result of the integral, participants present different methods and express uncertainty about the optimal approach. The discussion reflects multiple competing views on the best technique to use.

Contextual Notes

Some participants express uncertainty regarding the effectiveness of trigonometric substitution compared to u-substitution, highlighting the complexity of the methods involved.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {r3} integrarl rational expression}$
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄 🏄🏄
 
Physics news on Phys.org
Re: LCC 206 {r3} integrarl rational expression

karush said:
$\tiny\text{LCC 206 {r3} integrarl rational expression}$
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄 🏄🏄

I think you have used the most concise method. Well done :)
 
karush said:
$$\displaystyle
I=\int \frac{3x}{\sqrt{x+4}}\,dx
=2\left(x-8\right)\sqrt{x+4}+C \\
\text{u substitution} \\
u=x+4 \ \ \ du=dx \ \ \ x=u-4 \\
\text{then} \\
I=3\int \frac{u-4}{\sqrt{u}} \ du
= 3\int {u}^{1/2}du -12\int {u}^{-1/2}\\
\text{integrate and back substitute } \\
I=\left[\frac{{6u}^{3/2}}{3}-\frac{{u}^{1/2}}{3}\right]
\implies 2\left(x+4\right)^{3/2}- 24\sqrt{x+4} \\
\text{simplify} \\
I= 2\left(x-8\right)\sqrt{x+4}+C \\
\text{not sure if trig substitution would have better?} $$
Trig substitution is appropriate when we have functiions
with the forms: u^2 - a^2,\;u^2+a^2,\;a^2-u^2

If there is a linear function under the radical,
I often let u equal the entire radical
.
\text{Let }u \;=\;\sqrt{x+4}\quad\Rightarrow\quad x \,=\,u^2-4 \quad\Rightarrow\quad du \,=\,2u\,du

\text{Substitute: }\;\int \frac{3(u^2-4)\cdot 2u\,du}{u} \;=\;6\int(u^2-4)\,du

. . . =\;\;6\left(\frac{u^3}{3} - 4u\right) + C \;\;=\;\;2u^3 - 24u + C \;\;=\;\;2u(u^2-12) + C

\text{Back-substitute: }\;2\sqrt{x+4}(x+4-12) + C \;\;=\;\; 2\sqrt{x+4}(x-8)+C


 
$$\int\dfrac{3x}{\sqrt{x+4}}\,dx$$

$$x=4\sinh^2(u),\quad u=\sinh^{-1}\left(\dfrac{\sqrt x}{2}\right)$$

$$dx=8\sinh(u)\cosh(u)\,du$$

$$\int\dfrac{3\cdot4\sinh^2(u)\cdot8\sinh(u)\cosh(u)\,du}{2\cosh(u)}$$

$$=48\int\sinh^3(u)\,du=48\int(\cosh^2(u)-1)\sinh(u)\,du$$

$$w=\cosh(u),\quad dw=\sinh(u)\,du$$

$$48\int w^2-1\,dw=16w^3-48w+C$$

$$(*)\,\Leftrightarrow16w^3-48w\Rightarrow16\left(\dfrac{\sqrt{x+4}}{2}\right)^3-24\sqrt{x+4}+C$$

$$\int\dfrac{3x}{\sqrt{x+4}}\,dx=2(x-8)\sqrt{x+4}+C$$

$(*)$ Recall that $\cosh\left(\sinh^{-1}(z)\right)=\sqrt{z^2+1}$.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K