LCC 206 {review 7r13} Integral substitution

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Substitution
Click For Summary
SUMMARY

The integral \( I = \int_{0}^{\pi/4} \cos^5(2x) \sin^2(2x) \, dx \) evaluates to \( \frac{4}{105} \) using \( u \)-substitution where \( u = 2x \). The correct factor in front of the integral after substitution is \( \frac{1}{2} \), leading to the expression \( I = \frac{1}{2} \int_{0}^{\pi/2} \cos^5(u) \sin^2(u) \, du \). The integrand can be further simplified using the identity \( \cos^2(u) = 1 - \sin^2(u) \), resulting in a polynomial form suitable for integration.

PREREQUISITES
  • Understanding of integral calculus, specifically substitution methods.
  • Familiarity with trigonometric identities, particularly \( \cos^2(u) = 1 - \sin^2(u) \).
  • Knowledge of definite integrals and their evaluation techniques.
  • Experience with polynomial integration and manipulation of integrands.
NEXT STEPS
  • Study advanced techniques in integral calculus, focusing on \( u \)-substitution and integration by parts.
  • Explore the properties of trigonometric integrals and their simplifications.
  • Learn about the application of Pythagorean identities in integral evaluation.
  • Practice solving integrals involving products of sine and cosine functions.
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, as well as anyone seeking to enhance their skills in evaluating complex integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {review 7r13} Integral substitution}$
$$I=\int_{0}^{\pi/4}
\cos^5\left({2x}\right)\sin^2 \left({2x}\right)\,dx= \frac{4}{105} $$
$\text{u substitution } $
\begin{align}\displaystyle
u& = 2x&
du&= 2 \ d{x}&
2(\pi/4) &=\pi/2
\end{align}
$\text{then } $
$$I=2\int_{0}^{\pi/2}
\cos^5\left({u}\right)\sin^2 \left({u}\right)\,du
\implies \int_{0}^{\pi/2}
{\left(\cos^2 \left({u}\right)\right)}^{2}
\sin^2 \left({u}\right)\cos\left({u}\right) \ dx $$
$\text{Not sure if this is a good direction to go in?} $

$\tiny\text{ Surf the Nations math study group}$

🏄 🏄 🏄 🏄 🏄
 
Physics news on Phys.org
karush said:
$\tiny\text{LCC 206 {review 7r13} Integral substitution}$
$$I=\int_{0}^{\pi/4}
\cos^5\left({2x}\right)\sin^2 \left({2x}\right)\,dx= \frac{4}{105} $$
$\text{u substitution } $
\begin{align}\displaystyle
u& = 2x&
du&= 2 \ d{x}&
2(\pi/4) &=\pi/2
\end{align}
$\text{then } $
$$I=2\int_{0}^{\pi/2}
\cos^5\left({u}\right)\sin^2 \left({u}\right)\,du
\implies \int_{0}^{\pi/2}
{\left(\cos^2 \left({u}\right)\right)}^{2}
\sin^2 \left({u}\right)\cos\left({u}\right) \ dx $$
$\text{Not sure if this is a good direction to go in?} $

$\tiny\text{ Surf the Nations math study group}$

🏄 🏄 🏄 🏄 🏄

Yes that's exactly the direction to go in, but you have made a mistake, it should be a factor of 1/2 out front, not 2. Now write $\displaystyle \begin{align*} \cos^2{(u)} = 1 - \sin^2{(u)} \end{align*}$ making the integral

$\displaystyle \begin{align*} \frac{1}{2}\int_0^{\frac{\pi}{2}}{\left[ \cos^2{(u)} \right] ^2\sin^2{(u)}\cos{(u)}\,\mathrm{d}u} &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - \sin^2{(u)} \right] ^2\sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - 2\sin^2{(u)} + \sin^4{(u)} \right] \sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2} \int_0^{\frac{\pi}{2}}{ \left[ \sin^2{(u)} - 2\sin^4{(u)} + \sin^6{(u)} \right] \cos{(u)}\,\mathrm{d}u } \end{align*}$

Now you can make an appropriate substitution :)
 
Well, you would actually have:

$$I=\frac{1}{2}\int_0^{\frac{\pi}{2}} \cos^5(u)\sin^2(u)\,du$$

And then your observation that you can write:

$$I=\frac{1}{2}\int_0^{\frac{\pi}{2}} \left(\cos^2(u)\right)^2\sin^2(u)\cos(u)\,du$$

Is a good one because now (using a Pythagorean identity) you can write the integral in the form:

$$I=\frac{1}{2}\int_0^{\frac{\pi}{2}} f(\sin(u))\,d(\sin(u))$$
 
What would $f$ and $d$ be?
 
karush said:
What would $f$ and $d$ be?

Your integrand and differential, respectively. :)

I fiddled around too long trying to make something work with the symmetry of the given integrand, and was beaten to the punch. :D
 
$\displaystyle \begin{align*} \frac{1}{2}\int_0^{\frac{\pi}{2}}{\left[ \cos^2{(u)} \right] ^2\sin^2{(u)}\cos{(u)}\,\mathrm{d}u} &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - \sin^2{(u)} \right] ^2\sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - 2\sin^2{(u)} + \sin^4{(u)} \right] \sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2} \int_0^{\frac{\pi}{2}}{ \left[ \sin^2{(u)} - 2\sin^4{(u)} + \sin^6{(u)} \right] \cos{(u)}\,\mathrm{d}u } \end{align*}$

$$\frac{1}{2}\left[
\frac{ \sin^3{(u)}}{3}-
\frac{ \sin^5{(u)}}{5}+
\frac{ \sin^7{(u)}}{7}\right]_0^{π/2}
=\frac{4}{105}$$
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K