LCC 206 {review 7r13} Integral substitution

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Substitution
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral $$I=\int_{0}^{\pi/4} \cos^5\left({2x}\right)\sin^2 \left({2x}\right)\,dx$$ using substitution methods. Participants explore the implications of a u-substitution and the transformations of the integral, examining different approaches to simplify the expression.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant proposes a u-substitution with $$u = 2x$$, leading to a transformed integral over the interval $$[0, \pi/2]$$.
  • Another participant points out a mistake in the factor out front of the integral, suggesting it should be $$\frac{1}{2}$$ instead of $$2$$.
  • There is a suggestion to express $$\cos^2{(u)}$$ in terms of $$\sin^2{(u)}$$, which leads to a more complex integral involving powers of sine and cosine.
  • A participant notes that the integral can be expressed in the form $$I=\frac{1}{2}\int_0^{\frac{\pi}{2}} f(\sin(u))\,d(\sin(u))$$, prompting questions about the specific forms of $$f$$ and $$d$$.
  • One participant expresses frustration at not being able to utilize the symmetry of the integrand effectively.
  • Another participant provides a detailed breakdown of the integral after applying the suggested transformations, leading to a final expression that evaluates to $$\frac{4}{105}$$.

Areas of Agreement / Disagreement

Participants generally agree on the direction of the substitution method, but there are disagreements regarding the correct factors and transformations to apply. The discussion remains unresolved regarding the best approach to simplify the integral.

Contextual Notes

Some assumptions regarding the transformations and the application of identities may not be fully explored, leading to potential gaps in the reasoning. The discussion also reflects varying levels of confidence in the proposed methods.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {review 7r13} Integral substitution}$
$$I=\int_{0}^{\pi/4}
\cos^5\left({2x}\right)\sin^2 \left({2x}\right)\,dx= \frac{4}{105} $$
$\text{u substitution } $
\begin{align}\displaystyle
u& = 2x&
du&= 2 \ d{x}&
2(\pi/4) &=\pi/2
\end{align}
$\text{then } $
$$I=2\int_{0}^{\pi/2}
\cos^5\left({u}\right)\sin^2 \left({u}\right)\,du
\implies \int_{0}^{\pi/2}
{\left(\cos^2 \left({u}\right)\right)}^{2}
\sin^2 \left({u}\right)\cos\left({u}\right) \ dx $$
$\text{Not sure if this is a good direction to go in?} $

$\tiny\text{ Surf the Nations math study group}$

🏄 🏄 🏄 🏄 🏄
 
Physics news on Phys.org
karush said:
$\tiny\text{LCC 206 {review 7r13} Integral substitution}$
$$I=\int_{0}^{\pi/4}
\cos^5\left({2x}\right)\sin^2 \left({2x}\right)\,dx= \frac{4}{105} $$
$\text{u substitution } $
\begin{align}\displaystyle
u& = 2x&
du&= 2 \ d{x}&
2(\pi/4) &=\pi/2
\end{align}
$\text{then } $
$$I=2\int_{0}^{\pi/2}
\cos^5\left({u}\right)\sin^2 \left({u}\right)\,du
\implies \int_{0}^{\pi/2}
{\left(\cos^2 \left({u}\right)\right)}^{2}
\sin^2 \left({u}\right)\cos\left({u}\right) \ dx $$
$\text{Not sure if this is a good direction to go in?} $

$\tiny\text{ Surf the Nations math study group}$

🏄 🏄 🏄 🏄 🏄

Yes that's exactly the direction to go in, but you have made a mistake, it should be a factor of 1/2 out front, not 2. Now write $\displaystyle \begin{align*} \cos^2{(u)} = 1 - \sin^2{(u)} \end{align*}$ making the integral

$\displaystyle \begin{align*} \frac{1}{2}\int_0^{\frac{\pi}{2}}{\left[ \cos^2{(u)} \right] ^2\sin^2{(u)}\cos{(u)}\,\mathrm{d}u} &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - \sin^2{(u)} \right] ^2\sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - 2\sin^2{(u)} + \sin^4{(u)} \right] \sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2} \int_0^{\frac{\pi}{2}}{ \left[ \sin^2{(u)} - 2\sin^4{(u)} + \sin^6{(u)} \right] \cos{(u)}\,\mathrm{d}u } \end{align*}$

Now you can make an appropriate substitution :)
 
Well, you would actually have:

$$I=\frac{1}{2}\int_0^{\frac{\pi}{2}} \cos^5(u)\sin^2(u)\,du$$

And then your observation that you can write:

$$I=\frac{1}{2}\int_0^{\frac{\pi}{2}} \left(\cos^2(u)\right)^2\sin^2(u)\cos(u)\,du$$

Is a good one because now (using a Pythagorean identity) you can write the integral in the form:

$$I=\frac{1}{2}\int_0^{\frac{\pi}{2}} f(\sin(u))\,d(\sin(u))$$
 
What would $f$ and $d$ be?
 
karush said:
What would $f$ and $d$ be?

Your integrand and differential, respectively. :)

I fiddled around too long trying to make something work with the symmetry of the given integrand, and was beaten to the punch. :D
 
$\displaystyle \begin{align*} \frac{1}{2}\int_0^{\frac{\pi}{2}}{\left[ \cos^2{(u)} \right] ^2\sin^2{(u)}\cos{(u)}\,\mathrm{d}u} &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - \sin^2{(u)} \right] ^2\sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2}\int_0^{\frac{\pi}{2}}{ \left[ 1 - 2\sin^2{(u)} + \sin^4{(u)} \right] \sin^2{(u)} \cos{(u)}\,\mathrm{d}u } \\ &= \frac{1}{2} \int_0^{\frac{\pi}{2}}{ \left[ \sin^2{(u)} - 2\sin^4{(u)} + \sin^6{(u)} \right] \cos{(u)}\,\mathrm{d}u } \end{align*}$

$$\frac{1}{2}\left[
\frac{ \sin^3{(u)}}{3}-
\frac{ \sin^5{(u)}}{5}+
\frac{ \sin^7{(u)}}{7}\right]_0^{π/2}
=\frac{4}{105}$$
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K