LCC 206 {review 7r5} Integral substitution}

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Integral Substitution
Click For Summary
SUMMARY

The forum discussion focuses on the evaluation of the integral \( I = \int_{-2}^{1} \frac{3}{{x}^{2}+4x+13}\,dx \) using integral substitution. The correct approach involves completing the square to transform the integrand into the form \( \frac{3}{{(x+2)}^{2}+3^{2}} \) and applying the formula \( \int \frac{du}{{u}^{2}+a^{2}} = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + C \). The final result of the integral is \( \frac{\pi}{4} \), confirming the calculations made during the discussion.

PREREQUISITES
  • Understanding of integral calculus and substitution methods
  • Familiarity with the arctangent function and its properties
  • Knowledge of completing the square for quadratic expressions
  • Ability to manipulate definite integrals and evaluate limits
NEXT STEPS
  • Study the derivation and applications of the arctangent integral formula
  • Practice completing the square with various quadratic functions
  • Explore advanced techniques in integral calculus, such as trigonometric substitution
  • Learn about the properties of definite integrals and their geometric interpretations
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, integral evaluation, and mathematical analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{LCC 206 {review 7r5} Integral substitution}$
$$I=\int_{-2} ^{3} \frac{3}{{x}^{2}+4x+13}\,dx=
\arctan {\left(\frac{5}{3}\right)} $$
$\text{ complete the square } $
$$ \frac{3}{{x}^{2}+4x+13}
\implies\frac{3}{{\left(x+2 \right)}^{2}+{3}^{2}}$$
$\text{ then } $
$$\begin{align}\displaystyle
u& = x+2 &
a&= 3 \\
\end{align}$$
$\text{ using the formula } $
$$\int\frac{dx}{{u}^{2}+{a}^{2}}
=\arctan\left(\frac{u}{a}\right)+C$$
$\text{ results in } $
$$3\left[\arctan\left(\frac{x+2}{3}\right)\right]_{-2}^3
= \arctan {\left(\frac{5}{3}\right)}
$$
$\text{saw the answer to my question in process
but thot would finish the post don't know another way to do it🐮} $
$\tiny\text{ Surf the Nations math study group}$
🏄 🏄 🏄 🏄 🏄
 
Physics news on Phys.org
The formula is actually:

$$\int\frac{du}{u^2+a^2}=\frac{1}{a}\arctan\left(\frac{u}{a}\right)+C$$

And so you would have:

$$\left[\arctan\left(\frac{x+2}{3}\right)\right]_{-2}^3=\arctan {\left(\frac{5}{3}\right)}$$
 
$\tiny\text{LCC 206 {review 7r5} Integral substitution}$

I just noticed the upper limit was $1$ so..

$$I=\int_{-2} ^{1} \frac{3}{{x}^{2}+4x+13}\,dx=
\frac{\pi}{4} $$
$\text{ complete the square } $
$$ \frac{3}{{x}^{2}+4x+13}
\implies\frac{3}{{\left(x+2 \right)}^{2}+{3}^{2}}$$
$\text{ then } $
$$\begin{align}\displaystyle
u& = x+2&
du& =dx&
a&= 3
\end{align}$$
$\text{ using the formula } $
$$\int\frac{du}{{u}^{2}+{a}^{2}}
=\arctan\left(\frac{u}{a}\right)+C$$
$\text{ results in } $
$$3\left[\arctan\left(\frac{x+2}{3}\right)\right]_{-2}^1
= \frac{\pi}{4}
$$

Where does 3 supposed to disappear?

$\tiny\text{ Surf the Nations math study group}$
🏄 🏄 🏄 🏄 🏄
 
karush said:
...Where does 3 supposed to disappear?

The formula is actually:

$$\int\frac{du}{u^2+a^2}=\frac{1}{a}\arctan\left(\frac{u}{a}\right)+C$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K