MHB Least Possible Value of a+b: 11 & 13 Divisibility

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Divisibility Value
Click For Summary
The discussion focuses on finding the least possible value of a + b, where a and b are positive integers that satisfy the conditions of divisibility by 11 and 13. The key equations derived from the problem are that 11 divides a + 13b and 13 divides a + 11b. Participants explore various integer combinations to meet these criteria. Albert provides a solution that identifies the minimum value of a + b. The final answer is confirmed through calculations and logical reasoning.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
find the least possible value of a + b where a and b are positive integers and 11 divides $a+ 13b$
and 13 divides $a + 11 b$
 
Last edited:
Mathematics news on Phys.org
kaliprasad said:
find the least possible value of a + b where a and b are positive and 11 divides $a+ 13b$
and 13 divides $a + 11 b$
the least possible value of a + b=14
a=11.5,b=2.5
 
Last edited:
Albert said:
the least possible value of a + b=14
a=11.5,b=2.5

sorry I meant integers
 
kaliprasad said:
sorry I meant integers
if $a,b\in N$
$min(a+b)=28, a=23,b=5$
 
Albert has provided the answer
here is the solution

$11$ divides $a + 2b$ and hence $11$ divides $6a + 12b$ or $11$ divides $6a + b$
$13$ divides $a - 2b$ and hence $13$ divides $6a - 12b$ or $13$ divides $6a + b$

so $6a + b$ is divisible by $11$ and $13$ and hence $143$
say $6a +b = 143 t\cdots(1)$
$6a + 6b = 143t + 5b = 144 t + 6b - ((t+b)$
So $t + b$ is divisible by $6$ and hence $t + b > 6 \cdots(2)$
$(a+b) = 143t + 5b = 138 t + 5(t+b) >=168$
Hence $a + b >= 28$
From (2) putting $t = 1$ we get $b= 5$ and from (1) we get $a = 23$ so $a=23$ and $b=5$ satisfies
the condition so $a+b$ lowest value is 28
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 47 ·
2
Replies
47
Views
6K
  • · Replies 3 ·
Replies
3
Views
966
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K