Least upper bound of open interval.

Click For Summary
The discussion centers on the concept of the least upper bound for an open interval, specifically questioning why the least upper bound of (1,2) is 2 rather than a number just below it, like 1.9999999. It clarifies that the real numbers 1.9999999... and 2 are equal, meaning 2 is indeed the least upper bound. The reasoning provided explains that if the least upper bound were less than 2, there would be a number between it and 2 that would also serve as an upper bound, contradicting its status as the least upper bound. Thus, the conclusion is that the least upper bound for any open interval (a,b) is always b. Understanding this concept is essential for grasping the properties of real numbers and intervals.
BareFootKing
Messages
30
Reaction score
0
I am having trouble understanding how there could be a least upper bound for an open interval. If I have (a,b) and i am looking for the least upper bound X which is the number that is less than or equal to the set of Y such that Y> all the numbers in the interval (a,b) when I think about it I can't understand why it would be b.

If the interval was (1,2) I would first think the lowest upper bound would be just to the left of 2. So 1.9999999 which would be a number with infinite decimals . I don't understand why it would be 2 as my textbooks says.
 
Physics news on Phys.org
I am having trouble understanding how there could be a least upper bound for an open interval. If I have (a,b) and i am looking for the least upper bound X which is the number that is less than or equal to the set of Y such that Y> all the numbers in the interval (a,b) when I think about it I can't understand why it would be b.

If the interval was (1,2) I would first think the lowest upper bound would be just to the left of 2. So 1.9999999 which would be a number with infinite decimals . I don't understand why it would be 2 as my textbooks says.

See, the real numbers 1.9999999... (with infinitely many decimals; this isn't the same as the 1.9999999 that you wrote!) and 2 are equal. Let me backtrack a little...

The least upper bound of (1,2), call it s, has to satisfy two conditions:
(i) s is an upper bound of (1,2), i.e. if 1 < x < 2, then x ≤ s. [This is the upper bound part.]
(ii) If t is any upper bound of (1,2), then s ≤ t. [This is the least part.]

So obviously we can't have s < 2, because then there is some number in between s and 2 which is bigger than s, which makes s not an upper bound. E.g. if s = 1.9 we can take 1.95 as our counterexample. Therefore s ≥ 2.

Now, if s > 2 we can find some number in between s and 2 like before, only this time the number will be smaller than s and bigger than 2. Thus this number will still be an upper bound of (1,2), but it will be less than s, so s will not be a least upper bound. E.g. if s = 2.1 we can take 2.05 as our counterexample. Therefore s ≤ 2.

Putting these two parts together shows that in fact s = 2. The same reasoning applies to any open interval (a,b), but I chose to stick to (1,2) for concreteness.
 
Filler (JIC):

For the interval (1,2), if s=2.1, then it would be an upper bound, because there is no number between s and 2 which is less than 2... but it is not the least upper bound because there are still numbers smaller than s which are also upper bounds.

1.9999... =2 because $$1.999...= 1+9\sum_{n=1}^\infty 10^{-n}$$ ... which is the sum of a geometric series.
You know how to do those: have a go :)
 
Last edited:
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K