I Lecture notes on SUSY using finite matrix as example?

arivero
Gold Member
Messages
3,481
Reaction score
187
TL;DR
Eigen(AA^+)=Eigen(A^+A)
As you know, a lot of SUSY examples, particularly from Witten's "SUSY QM", pivot on the factorisation trick: produce two hamiltonians $$H_0=AA^+, H_1=A^+A$$ and see they have the same eigenvalues except for ceros.

The proof usually goes by: let ##\Psi## be an eigenvector of ##H_0##, consider ##|A^+\Psi \rangle ##, then $$H_1 |A^+\Psi \rangle =A^+AA^+\Psi=A^+H_0\Psi=A^+\lambda\Psi=\lambda|A^+\Psi \rangle$$
Now this can be already seen if A a 2x3 matrix, and I think that I have sometimes this example as an starting point but just now I can not locate it, do any of you remember perhaps a blog entry or, better, any set of lecture notes doing this? With finite matrices, I mean.

I got the idea of searching simultaneously for "susy lectures" and "Cholesky factorisation" but no results.
 
Last edited:
Physics news on Phys.org
Maybe try SUSY transformation and Cholesky factorization.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
10K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K