I Lecture notes on SUSY using finite matrix as example?

  • I
  • Thread starter Thread starter arivero
  • Start date Start date
  • Tags Tags
    Lecture notes Susy
arivero
Gold Member
Messages
3,481
Reaction score
187
TL;DR Summary
Eigen(AA^+)=Eigen(A^+A)
As you know, a lot of SUSY examples, particularly from Witten's "SUSY QM", pivot on the factorisation trick: produce two hamiltonians $$H_0=AA^+, H_1=A^+A$$ and see they have the same eigenvalues except for ceros.

The proof usually goes by: let ##\Psi## be an eigenvector of ##H_0##, consider ##|A^+\Psi \rangle ##, then $$H_1 |A^+\Psi \rangle =A^+AA^+\Psi=A^+H_0\Psi=A^+\lambda\Psi=\lambda|A^+\Psi \rangle$$
Now this can be already seen if A a 2x3 matrix, and I think that I have sometimes this example as an starting point but just now I can not locate it, do any of you remember perhaps a blog entry or, better, any set of lecture notes doing this? With finite matrices, I mean.

I got the idea of searching simultaneously for "susy lectures" and "Cholesky factorisation" but no results.
 
Last edited:
Physics news on Phys.org
Maybe try SUSY transformation and Cholesky factorization.
 
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
Back
Top