I Left Invariant Metric: What I Don't Understand

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Invariant Metric
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
I haven't learned about Lie Groups yet, but came across this question.

1626811932297.png


What I don't understand:
- is the semi-direct product ##R_+ \ltimes R^4## here a matrix group with elements ##\begin{pmatrix} \lambda & x^{\mu} \\ 0 & 1 \end{pmatrix}##? And is the group multiplication then matrix multiplication?
- I guessed that because ##R_+ \ltimes R^4 \sim R^5## that the metric acts on matrices ##g_1, g_2## in the group as it would acting on two vectors in ##R^5##, but what does it mean that the metric is left invariant? Is it that for an arbitrary matrix ##g_3## in the group that ##\langle g_1, g_2 \rangle = \langle g_3 g_1, g_3 g_2 \rangle##?

(Not sure if any of that's right and maybe it'd be better to actually learn the theory first, but sometimes a practical example can't hurt?)
 
  • Like
Likes Delta2 and Dale
Physics news on Phys.org
At first glance, I think this is the subgroup of the Poincaré group with all 4 translations, but only one dilatation (multiplication with ##M_{\mu\nu}=\lambda ##) as opposed to the entire Lorentz group. You could basically do all the things you do with the Poincaré group, but with far fewer multiplications, since the entire Lorentz subgroup is reduced to ##\mathbb{R}_+.##
 
  • Like
Likes ergospherical
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top