Length of a third side of triangle

  • Context: MHB 
  • Thread starter Thread starter Joystar77
  • Start date Start date
  • Tags Tags
    Length Triangle
Click For Summary
SUMMARY

The discussion focuses on calculating the length of the third side of a triangle given an area of 18 square units and two sides measuring 5 and 10 units. Three methods were presented: using the sine area formula, the law of cosines, and Heron's formula. The calculations yield two potential lengths for the third side: approximately 7.4567 units and 14.775 units or 5.63 units, depending on the angle used. The results confirm that both methods align with the values derived from Heron's formula.

PREREQUISITES
  • Understanding of triangle properties and formulas
  • Knowledge of the law of cosines
  • Familiarity with Heron's formula
  • Basic trigonometry, including sine and inverse sine functions
NEXT STEPS
  • Study the law of cosines in-depth for triangle calculations
  • Learn about Heron's formula and its applications in triangle geometry
  • Explore trigonometric identities and their use in solving triangle problems
  • Practice solving various triangle problems using different methods
USEFUL FOR

Students studying geometry, mathematics educators, and anyone interested in solving triangle-related problems using various mathematical approaches.

Joystar77
Messages
122
Reaction score
0
Math Problem: Find the length of the third side of a triangle if the area of the triangle is 18 and two of its sides have lengths of 5 and 10.

Which one of these are correct when I am working them out? If none of these are correct, then can somebody please help me solve this math problem step-by-step?

First way I worked out the problem:

A=18=0.5*5*10*sin(x)

x = 46 degrees

====

c^2 = 10^2+5^2-2*50*cos(46) = 55,53

third side:

c = 7,45

Second way I worked out the problem:

I know A = 18 units², a = 5 units, and b = 10 units

given A = (absin(C))/2

=> 18 = 25sin(C)

=> 18/25 = sin(C)

=> C = sin⁻¹(18/25)

given c² = a² + b² -2abcos(C)=> c² = 25 + 100 -100cos(sin⁻¹(18/25))

=> c = √(125 -100cos(sin⁻¹(18/25)))

=> c = √(125 - 4√301) units

=> c ≈ 7.4567 ( 4 dp)

Third way I worked out the problem:

Use Heron's formula for triangle:

Suppose the third side is x, and the others are 5 and 10, so by Heron formula, we get:

Area = sqrt(s(s-a)(s-b)(s-c))

where s=semi perimeter, a,b,c are sides of triangle, a=x, b=5, c=10

so, s=1/2.(x+5+10)

=1/2(x+15)

s-a= 1/2x +15/2 -x= 15/2-x/2

s-b=x/2+15/2-10/2=x/2+5/2

s-c=x/2+15/2-20/2=x/2-5/2

Area= sqrt(x/2+15/2)(15/2-x/2)(x/2+5/2)(x/2-5/…

324=(15/2+x/2)(15/2-x/2)(x/2+5/2)(x/2-…

324=(225/4 -x^2/4)(x^2/4-25/4)..multiply by 4 to get

1296=(225-x^2)(x^2-25)

225x^2-225*25-x^4+25x^2-1296=0

-x^4+250x^2-6921=0

-(x^4-250x^2+6921)=0

-((x^2-125)-8704)=0

(x^2-16sqrt34-125)(x^2+16sqrt34-125)=0

x^2=16sqrt34+125

x=sqrt(16sqrt 34+125)

=14.775

or

x^2=125-16sqrt34

x=sqrt(125-16sqrt34)

=5.63

So, the length of the third side is 14.775 or 5.63

I am really lost and confused on this problem.
 
Mathematics news on Phys.org
I would look at the two case:

View attachment 1340

In both cases, we have:

$$A=\frac{1}{2}bh$$

$$18=25\sin(\theta)$$

Case 1:

$$\theta=\pi-\sin^{-1}\left(\frac{18}{25} \right)$$

Using the law of cosines, we may write:

$$x=\sqrt{10^2+5^2-2\cdot5\cdot10\cos\left(\pi-\sin^{-1}\left(\frac{18}{25} \right) \right)}$$

Case 2:

$$\theta=\sin^{-1}\left(\frac{18}{25} \right)$$

Using the law of cosines, we may write:

$$x=\sqrt{10^2+5^2-2\cdot5\cdot10\cos\left(\sin^{-1}\left(\frac{18}{25} \right) \right)}$$

You should be able to obtain an exact value for $x$ in both cases (you have already found the exact value for the acute case), and these do agree with the two positive roots that Heron's formula gives.

What do you find?
 

Attachments

  • joystar.jpg
    joystar.jpg
    7.8 KB · Views: 115
Hi,
It may be easier to assign coordinates in the problem. See the attachment:

View attachment 1342
 

Attachments

  • MHBgeometry2.png
    MHBgeometry2.png
    13 KB · Views: 130

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 68 ·
3
Replies
68
Views
12K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K