A Lennard-Jones for bound/unbound atoms?

kirill77
Messages
1
Reaction score
0
TL;DR Summary
The force between two atoms should depend on whether one of them is bound to a third atom or not, right? How is that taken into account when using Lennard-Jones?
I can't find anywhere information on how people treat bound/unbound condition for atoms with Lennard-Jones simulation. Say if I have 3 oxygen atoms flying around and two of them at some point become an O2 molecule, this means their electron shells are now fully occupied - so I am guessing the attractive force between any of those 2 bound atoms and the third (unbound) atom should decrease. At the same time repulsive component shouldn't be affected that much. Is there a way to simulate this with Lennard-Jones somehow? Should I have bound/unbound state associated with every oxygen atom so that I can take this into account when applying Lennard-Jones formula?
 
Physics news on Phys.org
I recommend you to read: Chapter 4.2 in David Pettifor's Book: Bonding and Structure of Molecules and Solids. He discusses a generalized LJ Model and shows how the resulting structure depends on the relationship of repulsive and binding contributions.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top