A Lennard-Jones for bound/unbound atoms?

kirill77
Messages
1
Reaction score
0
TL;DR Summary
The force between two atoms should depend on whether one of them is bound to a third atom or not, right? How is that taken into account when using Lennard-Jones?
I can't find anywhere information on how people treat bound/unbound condition for atoms with Lennard-Jones simulation. Say if I have 3 oxygen atoms flying around and two of them at some point become an O2 molecule, this means their electron shells are now fully occupied - so I am guessing the attractive force between any of those 2 bound atoms and the third (unbound) atom should decrease. At the same time repulsive component shouldn't be affected that much. Is there a way to simulate this with Lennard-Jones somehow? Should I have bound/unbound state associated with every oxygen atom so that I can take this into account when applying Lennard-Jones formula?
 
Physics news on Phys.org
I recommend you to read: Chapter 4.2 in David Pettifor's Book: Bonding and Structure of Molecules and Solids. He discusses a generalized LJ Model and shows how the resulting structure depends on the relationship of repulsive and binding contributions.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Back
Top