Li-Ion vs LiPo… why not both?

  • Thread starter Thread starter Flyboy
  • Start date Start date
AI Thread Summary
The discussion centers on the suitability of Li-Ion versus LiPo batteries for electric RC aircraft, particularly for endurance flights. LiPo batteries excel in high-power applications, while Li-Ion batteries offer better energy density for lower throttle use, making them ideal for long-range FPV drones. A proposed solution involves paralleling a small LiPo battery with a Li-Ion battery to provide the necessary current for takeoff, though this presents challenges due to differing voltages and current outputs. Concerns about added weight and complexity suggest that alternatives like using a catapult for takeoff may be more effective. Overall, while combining both battery types is theoretically possible, it requires careful design considerations and may not yield significant advantages.
Flyboy
Gold Member
Messages
423
Reaction score
626
TL;DR Summary
Can you parallel a Li-Ion and a LiPo battery?
I’m looking into electric RC aircraft, especially for endurance flights, and I keep running into a debate over what is the best battery design for a high-endurance/long range electric plane.

I have gathered that LiPo batteries are outstanding for high-power applications, such as racers, eVTOL, etc, where you need large amounts of power constantly.

On the other hand, Li-Ion batteries are increasingly used for high endurance FPV drones that are not running wide-open throttle, as the lower current output of the batteries is less of an issue, and the better energy density is advantageous.

I would love to use Li-Ion batteries for a future design where endurance and efficiency are the driving factors, but I am concerned about the limited current output, especially at takeoff. My thought was to parallel the main Li-Ion battery with a small LiPo battery that would provide the extra current needed for takeoff and climb out before switching to the Li-Ion, but I have seen no examples of this having been done before. Thus, I am wondering why it isn’t done. Obviously, there’s the issue of different cell voltages and current outputs, so directly paralleling them is probably not safe, but given the current state of solid state relays, it would seem to be a relatively simple task to make them separate circuits that would switch between them after you reach a safe cruising state.

I am not an electrical expert by any stretch of the imagination, so what am I missing aside from the additional weight and complexity?
 
Engineering news on Phys.org
Endurance flight is about keeping weight as low as possible, so it is probably much wiser to use longer runway (or start from a catapult, even DIY style) than to make model heavier.

1712007272045.png
 
I would come at it from another direction. You want a high power/weight ratio. You can do that by either getting the power up, or the weight down. A battery's power depends on its volume, but a battery also has a casing: a non-power producing region that scales as the area. But still adds weight. So one big battery is, all other things being equal, better than two smaller ones.

Exotic batteries, like Lithium-Polymer or Lithium-Metal-Phosphate do a little better than Lithium-Ion, but not hugely better. Enough better to justify the additional dead weight? I don't know, but probably not.

If you have someone who is willing to build a batter for you, I'd look into making the battery casing some other part of the aircraft, so it does double duty. Also, there is a trade-off between recharge capacity and power density. If you only wanted to charge it, say, 30 times, you could do better than one you want to change 500 times. Maybe.
 
Flyboy said:
...to parallel the main Li-Ion battery with a small LiPo battery that would provide the extra current needed for takeoff and climb out before switching to the Li-Ion
If it's to 'switch to', then it's a bit more complicated parallel then a simple 'parallel battery'. And given the different chemistry/parameters, some kind of switching/matching would be clearly required.

Doable, but not trivial. I too would rather recommend a catapult or such as @Borek already suggested.

Maybe you could take a look at (proper) military drones.
 
Last edited:
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top