Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I have been looking around, and I can't seem to find a slightly different version of the lie derivative where the lie derivative is taken with respect to a tensor field, rather than a vector field. That is, a quantity which measures the change in a vector field, along the "flow" of a tensor field.

I amnotasking about the lie derivative of a tensor, which is the change in a tensor field through the flow of a vector field.

does such a derivative exist? is this a reasonable question?

Also, would a different, but correct way to describe the Lie derivative be "it measures the change in a tensor field with respect to the change in a vector field" ?

Thanks,

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Lie derivative with respect to anything else

Loading...

Similar Threads - derivative respect anything | Date |
---|---|

I What is the covariant derivative of the position vector? | Feb 18, 2018 |

I Lie derivative of a metric determinant | Dec 22, 2017 |

I Covariant derivative of Ricci scalar causing me grief! | Nov 26, 2017 |

A Covariant derivative only for tensor | Sep 23, 2017 |

Lie derivative of tensor field with respect to Lie bracket | Sep 14, 2015 |

**Physics Forums - The Fusion of Science and Community**