B LIGO Back Online: Upgraded Detector to Spot Fainter Gravitational Waves

phinds
Science Advisor
Insights Author
Gold Member
2024 Award
Messages
19,334
Reaction score
15,460
From this morning's Economist briefing:

The Laser Interferometer Gravitational-Wave Observatory—the world’s most sensitive device for spotting gravitational waves—starts up again on Wednesday after a three-year hiatus for upgrades.

LIGO is designed to detect subtle ripples in space and time radiated out by cataclysmic cosmic events like colliding black holes and supernovae. The existence of these cosmic wiggles was predicted, over a century ago, by the mathematics of Albert Einstein’s general theory of relativity. But it was only confirmed when LIGO observed the waves in 2015. The upgrades to LIGO’s instruments have resulted in more sensitive detectors, capable of observing far fainter gravitational-wave events than before.

LIGO consists of two American detectors in the states of Louisiana and Washington. It will be joined on this run by Virgo and KAGRA, LIGO’s European and Japanese equivalents. Astrophysicists hope that the joint sensitivity of these observatories will be enough to detect waves from the universe’s earliest origins.
 
  • Like
Likes berkeman, vanhees71 and FactChecker
Physics news on Phys.org
phinds said:
starts up again on Wednesday after a three-year hiatus for upgrades.
Do you have a link to the upgrades that they did?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top