MHB Likelihood Ratio Test for Common Variance from Two Normal Distribution Samples

Click For Summary
SUMMARY

The discussion centers on constructing a likelihood ratio test (LRT) for the common variance of two normal distributions, specifically testing the null hypothesis \(H_0: \sigma^2=\sigma_0^2\) against the alternative \(H_a: \sigma^2=\sigma_a^2\) where \(\sigma_a^2>\sigma_0^2\). The likelihood function is derived from independent samples \(X_1, \ldots, X_n\) and \(Y_1, \ldots, Y_m\), leading to the ratio \(\lambda\) and the rejection criterion based on the \(\chi^2\) distribution. The discussion also contrasts the LRT approach with a standard hypothesis test using the statistic \(\chi^2=\frac{(n-1)S_1^2+(m-1)S_2^2}{\sigma_0^2}\), highlighting the differences in methodology and estimator selection.

PREREQUISITES
  • Understanding of likelihood functions and maximum likelihood estimation (MLE).
  • Familiarity with hypothesis testing concepts, particularly for normal distributions.
  • Knowledge of the chi-squared distribution and its properties.
  • Proficiency in statistical notation and mathematical statistics, particularly from "Mathematical Statistics with Applications, 5th Ed." by Wackerly, Mendenhall, and Sheaffer.
NEXT STEPS
  • Study the derivation of likelihood functions in statistical inference.
  • Learn about the properties and applications of the chi-squared distribution in hypothesis testing.
  • Explore the differences between likelihood ratio tests and other hypothesis testing methods.
  • Investigate the conditions under which to prefer LRT over traditional tests in statistical analysis.
USEFUL FOR

Statisticians, data analysts, and researchers involved in hypothesis testing and variance analysis in normal distributions will benefit from this discussion.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
$\newcommand{\szdp}[1]{\!\left(#1\right)}
\newcommand{\szdb}[1]{\!\left[#1\right]}$
Problem Statement: Let $S_1^2$ and $S_2^2$ denote, respectively, the variances of independent random samples of sizes $n$ and $m$ selected from normal distributions with means $\mu_1$ and $\mu_2$ and common variance $\sigma^2.$ If $\mu_1$ and $\mu_2$ are unknown, construct a likelihood ratio test of $H_0: \sigma^2=\sigma_0^2$ against $H_a:\sigma^2=\sigma_a^2,$ assuming that $\sigma_a^2>\sigma_0^2.$

Note 1: This is Problem 10.89 in Mathematical Statistics with Applications, 5th Ed., by Wackerly, Mendenhall, and Sheaffer.

Note 2: This is cross-posted here.

My Work So Far: Let $X_1, X_2,\dots,X_n$ be the sample from the normal distribution with mean $\mu_1,$ and let $Y_1, Y_2,\dots,Y_m$ be the sample from the normal
distribution with mean $\mu_2.$ The likelihood is
\begin{align*}
L(\mu_1,\mu_2,\sigma^2)
=\szdp{\frac{1}{\sqrt{2\pi}}}^{\!\!(m+n)}
\szdp{\frac{1}{\sigma^2}}^{\!\!(m+n)/2}
\exp\szdb{-\frac{1}{2\sigma^2}\szdp{\sum_{i=1}^n(x_i-\mu_1)^2
+\sum_{i=1}^m(y_i-\mu_2)^2}}.
\end{align*}
We obtain $L\big(\hat{\Omega}_0\big)$ by replacing $\sigma^2$ with $\sigma_0^2$ and $\mu_1$ with $\overline{x}$ and $\mu_2$ with $\overline{y}:$
\begin{align*}
L\big(\hat{\Omega}_0\big)
=\szdp{\frac{1}{\sqrt{2\pi}}}^{\!\!(m+n)}
\szdp{\frac{1}{\sigma_0^2}}^{\!\!(m+n)/2}
\exp\szdb{-\frac{1}{2\sigma_0^2}\szdp{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}}.
\end{align*}
The MLE for the common variance in exactly this scenario (but with switched $m$ and $n$) is:
$$\hat\sigma^2=\frac{1}{m+n}\szdb{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}.$$
So this estimator plugged into the likelihood yields
\begin{align*}
L\big(\hat{\Omega}\big)
&=\szdp{\frac{1}{\sqrt{2\pi}}}^{\!\!(m+n)}
\szdp{\frac{1}{\hat\sigma^2}}^{\!\!(m+n)/2}
\exp\szdb{-\frac{1}{2\hat\sigma^2}\szdp{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}}.
\end{align*}
It follows that the ratio is
\begin{align*}
\lambda
&=\frac{L\big(\hat{\Omega}_0\big)}{L\big(\hat{\Omega}\big)}\\
&=\szdp{\frac{\hat\sigma^2}{\sigma_0^2}}^{\!\!(m+n)/2}
\exp\szdb{\frac{(\sigma_0^2-\hat\sigma^2)(m+n)}{2\sigma_0^2}}.\\
-2\ln(\lambda)
&=(m+n)\szdb{\frac{\hat\sigma^2}{\sigma_0^2}
-\ln\szdp{\frac{\hat\sigma^2}{\sigma_0^2}}-1}.
\end{align*}
Now the function $f(x)=x-\ln(x)-1$ first decreases, then increases. It has a global minimum of $0$ at $x=1.$ Note also that the original inequality becomes:
\begin{align*}
\lambda&<k\\
2\ln(\lambda)&<2\ln(k)\\
-2\ln(\lambda)&>k'.
\end{align*}
As the test is for $\sigma_a^2>\sigma_0^2,$ we will expect the estimator $\hat\sigma^2>\sigma_0^2.$ We can, evidently, use Theorem 10.2 and claim that $-2\ln(\lambda)$ is $\chi^2$ distributed with d.o.f. $1-0.$ So we reject $H_0$ when
$$(m+n)\szdb{\frac{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}{(m+n)\sigma_0^2}
-\ln\szdp{\frac{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}{(m+n)\sigma_0^2}}-1}
>\chi^2_{\alpha},$$
or
$$\frac{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}{\sigma_0^2}
-\ln\szdp{\frac{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}{\sigma_0^2}}-(m+n)
>\chi^2_{\alpha}.$$

My Questions:

1. Is my answer correct?
2. My answer is not the book's answer. The book's answer is simply that
$$\chi^2=\frac{(n-1)S_1^2+(m-1)S_2^2}{\sigma_0^2}$$
has a $\chi_{(n+m-2)}^2$ distribution under $H_0,$ and that we reject $H_0$ if $\chi^2>\chi_a^2.$ How is this a likelihood ratio test? It's not evident that they went through any of the steps of forming the likelihood ratio with all the necessary optimizations. Their estimator is not the MLE for $\sigma^2,$ is it?
 
Physics news on Phys.org
Sorry for the necropost. Why/when would we choose to conduct a LRT over a standard hypothesis test?
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

Replies
1
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
5K
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K