MHB Likelihood Ratio Test for Common Variance from Two Normal Distribution Samples

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
$\newcommand{\szdp}[1]{\!\left(#1\right)}
\newcommand{\szdb}[1]{\!\left[#1\right]}$
Problem Statement: Let $S_1^2$ and $S_2^2$ denote, respectively, the variances of independent random samples of sizes $n$ and $m$ selected from normal distributions with means $\mu_1$ and $\mu_2$ and common variance $\sigma^2.$ If $\mu_1$ and $\mu_2$ are unknown, construct a likelihood ratio test of $H_0: \sigma^2=\sigma_0^2$ against $H_a:\sigma^2=\sigma_a^2,$ assuming that $\sigma_a^2>\sigma_0^2.$

Note 1: This is Problem 10.89 in Mathematical Statistics with Applications, 5th Ed., by Wackerly, Mendenhall, and Sheaffer.

Note 2: This is cross-posted here.

My Work So Far: Let $X_1, X_2,\dots,X_n$ be the sample from the normal distribution with mean $\mu_1,$ and let $Y_1, Y_2,\dots,Y_m$ be the sample from the normal
distribution with mean $\mu_2.$ The likelihood is
\begin{align*}
L(\mu_1,\mu_2,\sigma^2)
=\szdp{\frac{1}{\sqrt{2\pi}}}^{\!\!(m+n)}
\szdp{\frac{1}{\sigma^2}}^{\!\!(m+n)/2}
\exp\szdb{-\frac{1}{2\sigma^2}\szdp{\sum_{i=1}^n(x_i-\mu_1)^2
+\sum_{i=1}^m(y_i-\mu_2)^2}}.
\end{align*}
We obtain $L\big(\hat{\Omega}_0\big)$ by replacing $\sigma^2$ with $\sigma_0^2$ and $\mu_1$ with $\overline{x}$ and $\mu_2$ with $\overline{y}:$
\begin{align*}
L\big(\hat{\Omega}_0\big)
=\szdp{\frac{1}{\sqrt{2\pi}}}^{\!\!(m+n)}
\szdp{\frac{1}{\sigma_0^2}}^{\!\!(m+n)/2}
\exp\szdb{-\frac{1}{2\sigma_0^2}\szdp{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}}.
\end{align*}
The MLE for the common variance in exactly this scenario (but with switched $m$ and $n$) is:
$$\hat\sigma^2=\frac{1}{m+n}\szdb{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}.$$
So this estimator plugged into the likelihood yields
\begin{align*}
L\big(\hat{\Omega}\big)
&=\szdp{\frac{1}{\sqrt{2\pi}}}^{\!\!(m+n)}
\szdp{\frac{1}{\hat\sigma^2}}^{\!\!(m+n)/2}
\exp\szdb{-\frac{1}{2\hat\sigma^2}\szdp{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}}.
\end{align*}
It follows that the ratio is
\begin{align*}
\lambda
&=\frac{L\big(\hat{\Omega}_0\big)}{L\big(\hat{\Omega}\big)}\\
&=\szdp{\frac{\hat\sigma^2}{\sigma_0^2}}^{\!\!(m+n)/2}
\exp\szdb{\frac{(\sigma_0^2-\hat\sigma^2)(m+n)}{2\sigma_0^2}}.\\
-2\ln(\lambda)
&=(m+n)\szdb{\frac{\hat\sigma^2}{\sigma_0^2}
-\ln\szdp{\frac{\hat\sigma^2}{\sigma_0^2}}-1}.
\end{align*}
Now the function $f(x)=x-\ln(x)-1$ first decreases, then increases. It has a global minimum of $0$ at $x=1.$ Note also that the original inequality becomes:
\begin{align*}
\lambda&<k\\
2\ln(\lambda)&<2\ln(k)\\
-2\ln(\lambda)&>k'.
\end{align*}
As the test is for $\sigma_a^2>\sigma_0^2,$ we will expect the estimator $\hat\sigma^2>\sigma_0^2.$ We can, evidently, use Theorem 10.2 and claim that $-2\ln(\lambda)$ is $\chi^2$ distributed with d.o.f. $1-0.$ So we reject $H_0$ when
$$(m+n)\szdb{\frac{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}{(m+n)\sigma_0^2}
-\ln\szdp{\frac{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}{(m+n)\sigma_0^2}}-1}
>\chi^2_{\alpha},$$
or
$$\frac{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}{\sigma_0^2}
-\ln\szdp{\frac{\sum_{i=1}^n(x_i-\overline{x})^2
+\sum_{i=1}^m(y_i-\overline{y})^2}{\sigma_0^2}}-(m+n)
>\chi^2_{\alpha}.$$

My Questions:

1. Is my answer correct?
2. My answer is not the book's answer. The book's answer is simply that
$$\chi^2=\frac{(n-1)S_1^2+(m-1)S_2^2}{\sigma_0^2}$$
has a $\chi_{(n+m-2)}^2$ distribution under $H_0,$ and that we reject $H_0$ if $\chi^2>\chi_a^2.$ How is this a likelihood ratio test? It's not evident that they went through any of the steps of forming the likelihood ratio with all the necessary optimizations. Their estimator is not the MLE for $\sigma^2,$ is it?
 
Physics news on Phys.org
Sorry for the necropost. Why/when would we choose to conduct a LRT over a standard hypothesis test?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top