MHB Lim x 1/x as x→0 - Yahoo! Answers

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I've seen it at Yahoo! Answers: find $\lim_{x\to 0} x \left\lfloor\dfrac{1}{x}\right\rfloor$.

According to the definition of the floor function, $\forall t\in\mathbb{R}$ we verify $0\le t-\lfloor t\rfloor <1$. So, if $x\neq 0$, $$0 ≤ \frac{1}{x}− \left\lfloor\frac{1}{x}\right\rfloor< 1\Rightarrow -\frac{1}{x}\le -\left\lfloor\frac{1}{x}\right\rfloor < 1-\frac{1}{x}$$ Multiplyng both sides by $x > 0:\quad$ $-1\le -x\left\lfloor\dfrac{1}{x}\right\rfloor <x-1$

Multiplying by $-1:\quad$ $1 − x < x \left\lfloor\dfrac{1}{x}\right\rfloor ≤ 1$

Applying limits: $\quad 1=\lim_{x\to 0^+} ( 1− x )\le \lim_{x\to 0^+} x \left\lfloor\dfrac{1}{x}\right\rfloor ≤ \lim_{x\to 0^+} 1=1$

This implies: $\quad \lim_{x\to 0^+} x \left\lfloor\dfrac{1}{x}\right\rfloor = 1$

With similar arguments: $\quad\lim_{x\to 0^-} x \left\lfloor\dfrac{1}{x}\right\rfloor = 1$

We can conclude that: $\quad\lim_{x\to 0} x \left\lfloor\dfrac{1}{x}\right\rfloor = 1$
 
Mathematics news on Phys.org
Alternatively.

Substitute $$x=\frac 1 t$$:
$$\lim_{x \to 0+} x \left\lfloor {\frac 1 x} \right\rfloor = \lim_{t \to \infty} \frac 1 t \lfloor t \rfloor$$

Since $$1 = \frac 1 t (t) \le \frac 1 t \lfloor t \rfloor < \frac 1 t (t + 1) \to 1$$, we get due to the squeeze theorem:
$$\lim_{x \to 0+} x \left\lfloor {\frac 1 x} \right\rfloor = 1$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K