MHB Limit of a Geometric Sequence: How to Evaluate?

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The limit of the geometric sequence is evaluated as follows: the limit of (2/3)^n as n approaches infinity is indeed 0. This is supported by the fact that the exponential function e^n grows faster than any polynomial or geometric sequence with a base less than 1. The transformation of (2/3)^n into an exponential form using natural logarithms confirms that it approaches zero. Thus, the limit can be concluded without extensive calculations. The final result is that the limit is 0.
tmt1
Messages
230
Reaction score
0
I have this limit:

$$\lim_{{n}\to{\infty}} {(\frac{2}{3})}^{n}$$

I know the answer is 0 but how can I evaluate this?
 
Mathematics news on Phys.org
Can you agree that $\lim_{n\to\infty}\dfrac{1}{e^n}=0$, without calculation?

If so,

$$\lim_{n\to\infty}\left(\dfrac23\right)^n=\lim_{n\to\infty}e^{n\ln(2/3)}=\lim_{n\to\infty}e^{-n\ln(3/2)}$$

$$=\lim_{n\to\infty}\left(\dfrac{1}{e^n}\right)^{\ln(3/2)}=0^{\ln(3/2)}=0$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K