MHB Limit of the smallest function value

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $m_n$ be the smallest value of the function:

$$f_n(x)=\sum_{k=0}^{2n}x^k.$$

Show, that $m_n\to\frac{1}{2}$ as $n \to \infty$.

Source: Nordic Math. Contest
 
Mathematics news on Phys.org
Suggested solution:
For $n > 1$:

$$f_n(x) = 1 + x + x^2 + …$$
$$= 1+x(1 + x^2 +x^4 + …) + x^2(1 + x^2 +x^4 + ….)$$
\[= 1 + x(x+1)\sum_{k=0}^{n-1}x^{2k}\]

From this we see that $f_n(x) \geq 1$, for $x \leq −1$ and $x \geq 0$. Consequently, $f_n$ attains its minimum value in the interval $(−1, 0)$. On this interval\[f_n(x) = \frac{1-x^{2n+1}}{1-x}> \frac{1}{1-x} > \frac{1}{2}\]So $m_n \geq \frac{1}{2}$. But\[m_n \leq f_n\left ( -1 + \frac{1}{\sqrt{n}}\right ) < \frac{1}{2-\frac{1}{\sqrt{n}}}+\frac{\left ( 1-\frac{1}{\sqrt{n}} \right )^{2n+1}}{2-\frac{1}{\sqrt{n}}}\]
As $n \rightarrow \infty$, the first term on the right hand side tends to the limit $\frac{1}{2}$.

In the second term, the factor\[\left ( 1-\frac{1}{\sqrt{n}} \right )^{2n} = \left ( \left ( 1-\frac{1}{\sqrt{n}} \right )^{\sqrt{n}} \right )^{2\sqrt{n}}\]

of the nominator tends to zero, because

\[\lim_{k\rightarrow \infty }\left ( 1-\frac{1}{k} \right )^k = e^{-1} < 1\]Thus,

\[\lim_{n \rightarrow \infty }m_n = \frac{1}{2}.\]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top