MHB Limit of the smallest function value

Click For Summary
The discussion focuses on the behavior of the function \( f_n(x) = \sum_{k=0}^{2n} x^k \) as \( n \) approaches infinity. It is established that the smallest value of this function, denoted as \( m_n \), converges to \( \frac{1}{2} \). The analysis likely involves evaluating the function's limits and properties as \( n \) increases. The convergence is significant in understanding the function's minimum behavior in relation to its parameters. The conclusion emphasizes the importance of this limit in mathematical analysis.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $m_n$ be the smallest value of the function:

$$f_n(x)=\sum_{k=0}^{2n}x^k.$$

Show, that $m_n\to\frac{1}{2}$ as $n \to \infty$.

Source: Nordic Math. Contest
 
Mathematics news on Phys.org
Suggested solution:
For $n > 1$:

$$f_n(x) = 1 + x + x^2 + …$$
$$= 1+x(1 + x^2 +x^4 + …) + x^2(1 + x^2 +x^4 + ….)$$
\[= 1 + x(x+1)\sum_{k=0}^{n-1}x^{2k}\]

From this we see that $f_n(x) \geq 1$, for $x \leq −1$ and $x \geq 0$. Consequently, $f_n$ attains its minimum value in the interval $(−1, 0)$. On this interval\[f_n(x) = \frac{1-x^{2n+1}}{1-x}> \frac{1}{1-x} > \frac{1}{2}\]So $m_n \geq \frac{1}{2}$. But\[m_n \leq f_n\left ( -1 + \frac{1}{\sqrt{n}}\right ) < \frac{1}{2-\frac{1}{\sqrt{n}}}+\frac{\left ( 1-\frac{1}{\sqrt{n}} \right )^{2n+1}}{2-\frac{1}{\sqrt{n}}}\]
As $n \rightarrow \infty$, the first term on the right hand side tends to the limit $\frac{1}{2}$.

In the second term, the factor\[\left ( 1-\frac{1}{\sqrt{n}} \right )^{2n} = \left ( \left ( 1-\frac{1}{\sqrt{n}} \right )^{\sqrt{n}} \right )^{2\sqrt{n}}\]

of the nominator tends to zero, because

\[\lim_{k\rightarrow \infty }\left ( 1-\frac{1}{k} \right )^k = e^{-1} < 1\]Thus,

\[\lim_{n \rightarrow \infty }m_n = \frac{1}{2}.\]