Limit of trigonometric function

Click For Summary
The limit of the function y = (-2x)/(sinx) as x approaches 0 can be evaluated using various methods, including L'Hopital's Theorem, which yields a result of -2. An alternative approach involves establishing that lim x → 0 (sin x)/x = 1, which can be proven using Taylor series expansion or geometric arguments. The squeeze theorem can also be applied to show that sin(x)/x is bounded between cos(x) and 1 for values of x near 0. Ultimately, simplifying the expression to -2/(sin(x)/x) allows for the application of standard limit rules to find the limit. This discussion highlights the different techniques available for solving limits involving trigonometric functions.
needingtoknow
Messages
160
Reaction score
0

Homework Statement



lim x --> 0 for function y = (-2x)/(sinx)

Using L'Hopital's Theorem, I found the derivative of the top and of the bottom and found the limit and got -2. How to find the limit as x approaches 0 without using L'Hopital's theorem. I know my solutions manual uses a different method, but I don't know what it is because they have skipped all those steps.
 
Physics news on Phys.org
needingtoknow said:

Homework Statement



lim x --> 0 for function y = (-2x)/(sinx)

Using L'Hopital's Theorem, I found the derivative of the top and of the bottom and found the limit and got -2. How to find the limit as x approaches 0 without using L'Hopital's theorem. I know my solutions manual uses a different method, but I don't know what it is because they have skipped all those steps.
If they skipped all the steps, how do you know that they did it differently from you? Is it possible that they expanded the denominator in a Taylor series about x = 0?

Chet
 
No matter how you solve this problem, you will effectively need to establish that
$$\lim_{x \rightarrow 0}\frac{\sin(x)}{x} = 1$$
There are many ways to do this, L'Hospital's rule being the simplest but not the most elementary.

If you know about Taylor series, then you can expand ##\sin(x)##, divide each term by ##x##, and take the limit. All terms except the first will go to zero.

There's also nice proof which uses a geometric (not 100% rigorous, but very intuitively convincing) argument to establish the following inequality, which is valid for all nonzero ##x \in [-\pi/2, \pi/2]##:
$$\cos(x) \leq \frac{\sin(x)}{x} \leq 1$$
The result then follows from the squeeze theorem. See the first answer at this StackExchange link to see the picture from which the inequality is inferred:

http://math.stackexchange.com/questions/75130/how-to-prove-that-lim-limits-x-to0-frac-sin-xx-1
 
The simplest way (the first week of Calc 1) to solve this problem is to note that (-2x)/sin(x) =-2/(sin(x)/x) then solve the problem using standard limit rules.
 
Thank you all for posting. I ended up using shortbus_bully's method because he was right it was the simplest way to solve the problem!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
17
Views
2K