- #1
Vali
- 48
- 0
Hi!
I have the following sequence $$(x_{n})_{n\geq 1}, \ x_{n}=ac+(a+ab)c^{2}+...+(a+ab+...+ab^{n})c^{n+1}$$
Also I know that $a,b,c\in \mathbb{R}$ and $|c|<1,\ b\neq 1, \ |bc|<1$
I need to find the limit of $x_{n}$.
My attempt is in the picture.The result should be $\frac{ac}{(1-bc)(1-c)}$
I miss something at these two sums which are geometric progressions.Each sum should start with $1$ but why ? If k starts from 0 results the first terms are $bc$ and $c$ right?
View attachment 8779
I have the following sequence $$(x_{n})_{n\geq 1}, \ x_{n}=ac+(a+ab)c^{2}+...+(a+ab+...+ab^{n})c^{n+1}$$
Also I know that $a,b,c\in \mathbb{R}$ and $|c|<1,\ b\neq 1, \ |bc|<1$
I need to find the limit of $x_{n}$.
My attempt is in the picture.The result should be $\frac{ac}{(1-bc)(1-c)}$
I miss something at these two sums which are geometric progressions.Each sum should start with $1$ but why ? If k starts from 0 results the first terms are $bc$ and $c$ right?
View attachment 8779