Limits at Infinity: Let S(n) Converge to S

  • Thread starter Thread starter mathsciguy
  • Start date Start date
  • Tags Tags
    Infinity Limit
Click For Summary
The discussion centers on the behavior of limits at infinity for a convergent sequence of partial sums {S(n)} of an infinite series, specifically addressing whether the limit of S(n+1) also equals S when the limit of S(n) does. It is confirmed that if S(n) converges to S, then S(n+1) converges to S as well, since both limits exist and the sequence is Cauchy. The conversation explores the use of epsilon-N proofs to formally demonstrate this relationship, emphasizing that if |S(n) - S| < ε for n ≥ N, it follows that |S(n+1) - S| < ε as well. Additionally, the discussion touches on the limit of S(n-1) as n approaches infinity, concluding that it also converges to S using similar reasoning. Overall, the thread provides insights into the properties of convergent sequences and their limits.
mathsciguy
Messages
134
Reaction score
1
I have a question about limits at infinity, particularly, about a limit I have seen in the context of infinite series convergence.

Let's say we have an infinite series where the the sequence of partial sums is given by {S(n)} and also, it is convergent and the sum is equal to S. Then we know that the limit of S(n) as n approaches infinity is S, but from this, can we also say the the limit of S(n+1) is equal to S?

Well, based from the textbook I was reading, it is. I actually have an intuitive idea of why, but I'd rather see something more of a 'formal' explanation, probably something which has epsilons. I tried verifying with an epsilon-N proof but I'm not that confident.
 
Physics news on Phys.org
mathsciguy said:
I have a question about limits at infinity, particularly, about a limit I have seen in the context of infinite series convergence.

Let's say we have an infinite series where the the sequence of partial sums is given by {S(n)} and also, it is convergent and the sum is equal to S. Then we know that the limit of S(n) as n approaches infinity is S, but from this, can we also say the the limit of S(n+1) is equal to S?
Yes. Both limits result in S.
mathsciguy said:
Well, based from the textbook I was reading, it is. I actually have an intuitive idea of why, but I'd rather see something more of a 'formal' explanation, probably something which has epsilons. I tried verifying with an epsilon-N proof but I'm not that confident.

It sounds like you've made a good start. People who are new to this try to do things with a ##\delta\ \epsilon## argument. If you can show that for a given ##\epsilon## a number N can be found so that if n ≥ N, then |Sn - S| < ##\epsilon##, you're set. Keep in mind that Sn+1 is the next number in the sequence. As long as the index is past the magic number N, every term in the sequence satisfies the inequality above.
 
Hm, well I could think that obviously if n≥N then this implies n+1≥N (if N>0 and n is restricted to positive integers). Does that mean I can say: if for any ε>0, and N>0 such that |S(n)-S|<ε whenever n≥N is true by hypothesis, then |S(n+1)-S|<ε whenever n+1≥N is also true?

The catch is I've used both N for S(n) and S(n+1).
 
Last edited:
mathsciguy said:
Hm, well I could think that obviously if n≥N then this implies n+1≥N (if N>0 and n is restricted to positive integers). Does that mean I can say: if for any ε>0, and N>0 such that |S(n)-S|<ε whenever n≥N is true by hypothesis, then |S(n+1)-S|<ε whenever n+1≥N is also true?
It's simpler than that: If n ≥ N, then for sure n+1 ≥ N. So Sn is within ##\epsilon## of S, Sn+1 is within ##\epsilon## of S, Sn+2 is within ##\epsilon## of S, ...
mathsciguy said:
The catch is I've used both N for S(n) and S(n+1).
 
I think that's same things as what I've said. Haha, sometimes I have a hard time wrapping my head around stuff like this. Thanks anyway.
 
Last edited:
Maybe this summarizes the ideas here:
You want to know :

Limn→oo[S(n+1)-S(n)]

But, since the series converges, the sequence of partial sums is Cauchy, so that
the difference in the parentheses goes to zero, i.e., the limit is 0. If you show quickly that both limits exist (more precisely, you can show that if S(n) exists as n→∞ , then S(n+1) also exists). Then you can say:

Limn→oo[S(n+1)-S(n)]=0 . Since both the limits exist, the limit distributes and

Limn→∞S(n)=Limn→∞S(n+1)
 
Last edited:
What if the limit of S(n) as n approaches infinity is known to be S, I've read that the function S(n-1) as n approaches infinity is also S. How do we verify this? My idea is that, after finding an N such that: |S(n)-S|<ε whenever n>N; and we adjust ε so that we find a 1<N.

So that: |S(n-1)-S|<ε' whenever (n-1)>(N-1).
 
mathsciguy said:
What if the limit of S(n) as n approaches infinity is known to be S, I've read that the function S(n-1) as n approaches infinity is also S. How do we verify this? My idea is that, after finding an N such that: |S(n)-S|<ε whenever n>N; and we adjust ε so that we find a 1<N.

So that: |S(n-1)-S|<ε' whenever (n-1)>(N-1).

Basically, |S_n- S|<e/2 (S_n converges) , and |S_(n-1)-S_n|<e/2 ( convergence implies

Cauchy) and then the triangle ineq.

kicks-in :

You can use that every convergent sequence is Cauchy, which means that for every e>0 there

is a positive N with |S_n-S_m| <e for all n,m>N . Choose, then, some N > n for any e>0

so that |S_n-S_(n-1)| <e . Then |S_(n-1) -S |=

|S_(n-1) -S_(n)+S_(n)-S | ≤ ...(triangle ineq.)
 
Last edited:

Similar threads

  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K