Line element in cylindrical coordinates

Catalina-
Messages
2
Reaction score
1
Homework Statement
As part of a recent homework I have to convert the line element
$$
ds²=-dt²+dx²+dy²+dz²
$$
to cylindrical coordinates
Relevant Equations
The cylindrical coordinates were given by
$$
r=\sqrt{x²+y²}
$$
$$
\phi=arctan(\frac{y}{x})
$$
First I took the total derivative of these and arrived at
$$
dr=\frac{\partial r}{\partial x}dx+\frac{\partial r}{\partial y}dy \quad\rightarrow \quad r²dr=xdx+ydy
$$
$$
d\phi=\frac{\partial \phi}{\partial x}dx+\frac{\partial \phi}{\partial y}dy \quad\rightarrow \quad r²dr
\phi=-ydx+xdy
$$
After solving the system of equations I got
$$
dx= xdr-yd\phi
$$
$$
dy=ydr+xd\phi
$$
After squaring these separately and adding them I got
$$
dx²+dy²=r²dr²+r²d\phi²
$$
and therefor the line element
$$
ds²=-dt²+r²dr²+r²d\phi²+dz²
$$
However the solution is not supposed to have a r² factor with the dr² term. I have looked at it for a while now but I cant seem to find my error.
 
Physics news on Phys.org
Catalina- said:
Homework Statement: As part of a recent homework I have to convert the line element
$$
ds²=-dt²+dx²+dy²+dz²
$$
to cylindrical coordinates
Relevant Equations: The cylindrical coordinates were given by
$$
r=\sqrt{x²+y²}
$$
$$
\phi=arctan(\frac{y}{x})
$$

First I took the total derivative of these and arrived at
$$
dr=\frac{\partial r}{\partial x}dx+\frac{\partial r}{\partial y}dy \quad\rightarrow \quad r²dr=xdx+ydy
$$
$$
d\phi=\frac{\partial \phi}{\partial x}dx+\frac{\partial \phi}{\partial y}dy \quad\rightarrow \quad r²dr
\phi=-ydx+xdy
$$
You have an extra factor of r on the left hand side of your result for dr. But since you haven't shown us how you calculated the partial derivatives, we can't tell you how it got there.

But none of this is necessary. You need to find dx^2 + dy^2 in terms of dr and d\phi. The easiest way is to start from <br /> \left. \begin{aligned} x = r \cos \phi \\ y = r \sin \phi \end{aligned}\right\} \Rightarrow <br /> \left\{\begin{aligned} dx = \cos \phi\,dr - r\sin \phi\,d\phi \\<br /> dy = \sin \phi \,dr + r\cos \phi\,d\phi \end{aligned}\right.
 
Hi. Welcome to PF. In addition to what @pasmith said, it may be worth noting that
Catalina- said:
$$r²dr=xdx+ydy$$
can easily be seen to be wrong on dimensional grounds. The left side has dimensions ##L^3## (length cubed) but the right hand side has dimensions ##L^2## so there's an error.
 
  • Like
Likes vela and WWGD
Thank you very much for your help @pasmith & @Steve4Physics.

You pointed me in the exact right direction, I made a silly mistake in the derivation of dr.
 
  • Like
Likes Steve4Physics
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top