Line element in cylindrical coordinates

Catalina-
Messages
2
Reaction score
1
Homework Statement
As part of a recent homework I have to convert the line element
$$
ds²=-dt²+dx²+dy²+dz²
$$
to cylindrical coordinates
Relevant Equations
The cylindrical coordinates were given by
$$
r=\sqrt{x²+y²}
$$
$$
\phi=arctan(\frac{y}{x})
$$
First I took the total derivative of these and arrived at
$$
dr=\frac{\partial r}{\partial x}dx+\frac{\partial r}{\partial y}dy \quad\rightarrow \quad r²dr=xdx+ydy
$$
$$
d\phi=\frac{\partial \phi}{\partial x}dx+\frac{\partial \phi}{\partial y}dy \quad\rightarrow \quad r²dr
\phi=-ydx+xdy
$$
After solving the system of equations I got
$$
dx= xdr-yd\phi
$$
$$
dy=ydr+xd\phi
$$
After squaring these separately and adding them I got
$$
dx²+dy²=r²dr²+r²d\phi²
$$
and therefor the line element
$$
ds²=-dt²+r²dr²+r²d\phi²+dz²
$$
However the solution is not supposed to have a r² factor with the dr² term. I have looked at it for a while now but I cant seem to find my error.
 
Physics news on Phys.org
Catalina- said:
Homework Statement: As part of a recent homework I have to convert the line element
$$
ds²=-dt²+dx²+dy²+dz²
$$
to cylindrical coordinates
Relevant Equations: The cylindrical coordinates were given by
$$
r=\sqrt{x²+y²}
$$
$$
\phi=arctan(\frac{y}{x})
$$

First I took the total derivative of these and arrived at
$$
dr=\frac{\partial r}{\partial x}dx+\frac{\partial r}{\partial y}dy \quad\rightarrow \quad r²dr=xdx+ydy
$$
$$
d\phi=\frac{\partial \phi}{\partial x}dx+\frac{\partial \phi}{\partial y}dy \quad\rightarrow \quad r²dr
\phi=-ydx+xdy
$$
You have an extra factor of r on the left hand side of your result for dr. But since you haven't shown us how you calculated the partial derivatives, we can't tell you how it got there.

But none of this is necessary. You need to find dx^2 + dy^2 in terms of dr and d\phi. The easiest way is to start from <br /> \left. \begin{aligned} x = r \cos \phi \\ y = r \sin \phi \end{aligned}\right\} \Rightarrow <br /> \left\{\begin{aligned} dx = \cos \phi\,dr - r\sin \phi\,d\phi \\<br /> dy = \sin \phi \,dr + r\cos \phi\,d\phi \end{aligned}\right.
 
Hi. Welcome to PF. In addition to what @pasmith said, it may be worth noting that
Catalina- said:
$$r²dr=xdx+ydy$$
can easily be seen to be wrong on dimensional grounds. The left side has dimensions ##L^3## (length cubed) but the right hand side has dimensions ##L^2## so there's an error.
 
  • Like
Likes vela and WWGD
Thank you very much for your help @pasmith & @Steve4Physics.

You pointed me in the exact right direction, I made a silly mistake in the derivation of dr.
 
  • Like
Likes Steve4Physics
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top