(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

The vlasov equation is (from !Introduction to Plasma Physics and Controlled Fusion! by Francis Chen):

$$\frac{d}{dt}f + \vec{v} \cdot \nabla f + \vec{a} \cdot \nabla_v f = 0$$

Where $$\nabla_v$$ is the del operator in velocity space. I've read that $$\nabla_v = \frac{\partial}{\partial v_r} \hat{v_r} + \frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} + \frac{\partial}{\partial v_z} \hat{z}$$ which I think is the operator expressed in cylindrical coordinates in velocity space. I would like to express this operator in cylindrical coordinates in regular space (i.e. $$\hat{\rho},\hat{\theta},\hat{z}$$).

2. Relevant equations (diagram)

3. The attempt at a solution

$$v_r = \sqrt{(v_\rho)^2 + (v_\phi)^2} = v$$

$$\theta_v = \phi + \tan^{-1}(\frac{v_\phi}{v_\rho})$$

$$\frac{\partial}{\partial v_r} = \frac{\partial}{\partial v_\rho}\frac{\partial v_\rho}{\partial v_r} + \frac{\partial}{\partial v_\phi}\frac{\partial v_\phi}{\partial v_r} = \frac{v_r}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v_r}{v_\phi}\frac{\partial}{\partial v_\phi} = \frac{v}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v}{v_\phi}\frac{\partial}{\partial v_\phi}$$

$$\frac{\partial}{\partial \theta_v} = \frac{\partial}{\partial v_\rho}\frac{\partial v_\rho}{\partial \theta_v} + \frac{\partial}{\partial v_\phi}\frac{\partial v_\phi}{\partial \theta_v} = -\frac{v^2}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{v^2}{v_\rho}\frac{\partial}{\partial v_\phi}$$

$$\vec{v} = v*\hat{v_r} = v (cos(\theta_v - \phi) \hat{\rho} + sin(\theta_v - \phi) \hat{\phi}) \rightarrow \hat{v_r} = cos(\theta_v - \phi) \hat{\rho} + sin(\theta_v - \phi) \hat{\phi} = \frac{v_\rho}{v}\hat{\rho} + \frac{v_\phi}{v} \hat{\phi}$$

$$\hat{v_\theta}$$ is 90 degrees rotated from $$\hat{v_r}$$ thus:

$$\hat{v_\theta} = -sin(\theta_v - \phi) \hat{\rho} + cos(\theta_v - \phi) \hat{\phi} = -\frac{v_\phi}{v} \hat{\rho} + \frac{v_\rho}{v} \hat{\phi}$$

So:

$$\frac{\partial}{\partial v_r} \hat{v_r} = (\frac{v_\rho}{v}\hat{\rho} + \frac{v_\phi}{v} \hat{\phi}) * (\frac{v}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v}{v_\phi}\frac{\partial}{\partial v_\phi}) = (\frac{\partial}{\partial v_\rho} + \frac{v_\rho}{v_\phi}\frac{\partial}{\partial v_\phi})\hat{\rho} + (\frac{v_\phi}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{\partial}{\partial v_\phi})\hat{\phi}$$

$$\frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} = \frac{1}{v}(-\frac{v_\phi}{v} \hat{\rho} + \frac{v_\rho}{v} \hat{\phi}) * (-\frac{v^2}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{v^2}{v_\rho}\frac{\partial}{\partial v_\phi}) = (\frac{\partial}{\partial v_\rho} - \frac{v_\phi}{v_\rho}\frac{\partial}{\partial v_\phi})\hat{\rho} + (-\frac{v_\rho}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{\partial}{\partial v_\phi})\hat{\phi}$$

Putting everything together:

$$\frac{\partial}{\partial v_r} \hat{v_r} + \frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} + \frac{\partial}{\partial v_z} \hat{z} = (2\frac{\partial}{\partial v_\rho} + (\frac{v_\rho}{v_\phi} - \frac{v_\phi}{v_\rho})\frac{\partial}{\partial v_\phi})\hat{\rho} + (2\frac{\partial}{\partial v_\phi} + (\frac{v_\phi}{v_\rho} - \frac{v_\rho}{v_\phi})\frac{\partial}{\partial v_\rho})\hat{\phi} + \frac{\partial}{\partial v_z} \hat{z}$$

However this does not look right.

Shouldn't $$\nabla_v = \frac{\partial}{\partial v_\rho} \hat{\rho} + \frac{\partial}{\partial v_\phi} \hat{\phi} + \frac{\partial}{\partial v_z} \hat{z}$$ ?

Have I made a mistake somewhere?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: How to express velocity gradient in cylindrical coordinates?

Tags:

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**