1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

How to express velocity gradient in cylindrical coordinates?

  1. Nov 18, 2017 #1
    1. The problem statement, all variables and given/known data
    The vlasov equation is (from !Introduction to Plasma Physics and Controlled Fusion! by Francis Chen):

    $$\frac{d}{dt}f + \vec{v} \cdot \nabla f + \vec{a} \cdot \nabla_v f = 0$$

    Where $$\nabla_v$$ is the del operator in velocity space. I've read that $$\nabla_v = \frac{\partial}{\partial v_r} \hat{v_r} + \frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} + \frac{\partial}{\partial v_z} \hat{z}$$ which I think is the operator expressed in cylindrical coordinates in velocity space. I would like to express this operator in cylindrical coordinates in regular space (i.e. $$\hat{\rho},\hat{\theta},\hat{z}$$).

    2. Relevant equations (diagram)

    537fc1493f5ed9.jpg
    3. The attempt at a solution

    $$v_r = \sqrt{(v_\rho)^2 + (v_\phi)^2} = v$$

    $$\theta_v = \phi + \tan^{-1}(\frac{v_\phi}{v_\rho})$$

    $$\frac{\partial}{\partial v_r} = \frac{\partial}{\partial v_\rho}\frac{\partial v_\rho}{\partial v_r} + \frac{\partial}{\partial v_\phi}\frac{\partial v_\phi}{\partial v_r} = \frac{v_r}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v_r}{v_\phi}\frac{\partial}{\partial v_\phi} = \frac{v}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v}{v_\phi}\frac{\partial}{\partial v_\phi}$$

    $$\frac{\partial}{\partial \theta_v} = \frac{\partial}{\partial v_\rho}\frac{\partial v_\rho}{\partial \theta_v} + \frac{\partial}{\partial v_\phi}\frac{\partial v_\phi}{\partial \theta_v} = -\frac{v^2}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{v^2}{v_\rho}\frac{\partial}{\partial v_\phi}$$

    $$\vec{v} = v*\hat{v_r} = v (cos(\theta_v - \phi) \hat{\rho} + sin(\theta_v - \phi) \hat{\phi}) \rightarrow \hat{v_r} = cos(\theta_v - \phi) \hat{\rho} + sin(\theta_v - \phi) \hat{\phi} = \frac{v_\rho}{v}\hat{\rho} + \frac{v_\phi}{v} \hat{\phi}$$

    $$\hat{v_\theta}$$ is 90 degrees rotated from $$\hat{v_r}$$ thus:

    $$\hat{v_\theta} = -sin(\theta_v - \phi) \hat{\rho} + cos(\theta_v - \phi) \hat{\phi} = -\frac{v_\phi}{v} \hat{\rho} + \frac{v_\rho}{v} \hat{\phi}$$

    So:

    $$\frac{\partial}{\partial v_r} \hat{v_r} = (\frac{v_\rho}{v}\hat{\rho} + \frac{v_\phi}{v} \hat{\phi}) * (\frac{v}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v}{v_\phi}\frac{\partial}{\partial v_\phi}) = (\frac{\partial}{\partial v_\rho} + \frac{v_\rho}{v_\phi}\frac{\partial}{\partial v_\phi})\hat{\rho} + (\frac{v_\phi}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{\partial}{\partial v_\phi})\hat{\phi}$$

    $$\frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} = \frac{1}{v}(-\frac{v_\phi}{v} \hat{\rho} + \frac{v_\rho}{v} \hat{\phi}) * (-\frac{v^2}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{v^2}{v_\rho}\frac{\partial}{\partial v_\phi}) = (\frac{\partial}{\partial v_\rho} - \frac{v_\phi}{v_\rho}\frac{\partial}{\partial v_\phi})\hat{\rho} + (-\frac{v_\rho}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{\partial}{\partial v_\phi})\hat{\phi}$$

    Putting everything together:
    $$\frac{\partial}{\partial v_r} \hat{v_r} + \frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} + \frac{\partial}{\partial v_z} \hat{z} = (2\frac{\partial}{\partial v_\rho} + (\frac{v_\rho}{v_\phi} - \frac{v_\phi}{v_\rho})\frac{\partial}{\partial v_\phi})\hat{\rho} + (2\frac{\partial}{\partial v_\phi} + (\frac{v_\phi}{v_\rho} - \frac{v_\rho}{v_\phi})\frac{\partial}{\partial v_\rho})\hat{\phi} + \frac{\partial}{\partial v_z} \hat{z}$$

    However this does not look right.
    Shouldn't $$\nabla_v = \frac{\partial}{\partial v_\rho} \hat{\rho} + \frac{\partial}{\partial v_\phi} \hat{\phi} + \frac{\partial}{\partial v_z} \hat{z}$$ ?

    Have I made a mistake somewhere?
     
  2. jcsd
  3. Nov 19, 2017 #2

    Charles Link

    User Avatar
    Homework Helper

    I don't think you can do what you are trying to do because ## f=f(\vec{r},\vec{v}, t) ##. The distribution function ## f ## is basically in a 6 dimensional space of ## \vec{r} ## and ## \vec{v} ##. ## \\ ## At each location ## \vec{r} ## there is a distribution of velocities. The distribution function ## f ## supplies information about how the particle velocities are distributed at this point. The velocity vectors are in a completely different space from the coordinate vectors.
     
  4. Nov 19, 2017 #3
    Ok, but then how does one evaluate $$\vec{a} \cdot \nabla_v$$ in the vlasov equation? The acceleration vector is in spatial coordinates I believe.
     
  5. Nov 19, 2017 #4

    Charles Link

    User Avatar
    Homework Helper

    Acceleration ## \vec{a}=\vec{F}/m ## , and the vector ## \vec{F } ## is usually replaced by the electromagnetic force ## q(\vec{E}+\vec{v} \times \vec{B}) ##.
     
    Last edited: Nov 19, 2017
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: How to express velocity gradient in cylindrical coordinates?
Loading...