Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: How to express velocity gradient in cylindrical coordinates?

  1. Nov 18, 2017 #1
    1. The problem statement, all variables and given/known data
    The vlasov equation is (from !Introduction to Plasma Physics and Controlled Fusion! by Francis Chen):

    $$\frac{d}{dt}f + \vec{v} \cdot \nabla f + \vec{a} \cdot \nabla_v f = 0$$

    Where $$\nabla_v$$ is the del operator in velocity space. I've read that $$\nabla_v = \frac{\partial}{\partial v_r} \hat{v_r} + \frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} + \frac{\partial}{\partial v_z} \hat{z}$$ which I think is the operator expressed in cylindrical coordinates in velocity space. I would like to express this operator in cylindrical coordinates in regular space (i.e. $$\hat{\rho},\hat{\theta},\hat{z}$$).

    2. Relevant equations (diagram)

    537fc1493f5ed9.jpg
    3. The attempt at a solution

    $$v_r = \sqrt{(v_\rho)^2 + (v_\phi)^2} = v$$

    $$\theta_v = \phi + \tan^{-1}(\frac{v_\phi}{v_\rho})$$

    $$\frac{\partial}{\partial v_r} = \frac{\partial}{\partial v_\rho}\frac{\partial v_\rho}{\partial v_r} + \frac{\partial}{\partial v_\phi}\frac{\partial v_\phi}{\partial v_r} = \frac{v_r}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v_r}{v_\phi}\frac{\partial}{\partial v_\phi} = \frac{v}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v}{v_\phi}\frac{\partial}{\partial v_\phi}$$

    $$\frac{\partial}{\partial \theta_v} = \frac{\partial}{\partial v_\rho}\frac{\partial v_\rho}{\partial \theta_v} + \frac{\partial}{\partial v_\phi}\frac{\partial v_\phi}{\partial \theta_v} = -\frac{v^2}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{v^2}{v_\rho}\frac{\partial}{\partial v_\phi}$$

    $$\vec{v} = v*\hat{v_r} = v (cos(\theta_v - \phi) \hat{\rho} + sin(\theta_v - \phi) \hat{\phi}) \rightarrow \hat{v_r} = cos(\theta_v - \phi) \hat{\rho} + sin(\theta_v - \phi) \hat{\phi} = \frac{v_\rho}{v}\hat{\rho} + \frac{v_\phi}{v} \hat{\phi}$$

    $$\hat{v_\theta}$$ is 90 degrees rotated from $$\hat{v_r}$$ thus:

    $$\hat{v_\theta} = -sin(\theta_v - \phi) \hat{\rho} + cos(\theta_v - \phi) \hat{\phi} = -\frac{v_\phi}{v} \hat{\rho} + \frac{v_\rho}{v} \hat{\phi}$$

    So:

    $$\frac{\partial}{\partial v_r} \hat{v_r} = (\frac{v_\rho}{v}\hat{\rho} + \frac{v_\phi}{v} \hat{\phi}) * (\frac{v}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v}{v_\phi}\frac{\partial}{\partial v_\phi}) = (\frac{\partial}{\partial v_\rho} + \frac{v_\rho}{v_\phi}\frac{\partial}{\partial v_\phi})\hat{\rho} + (\frac{v_\phi}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{\partial}{\partial v_\phi})\hat{\phi}$$

    $$\frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} = \frac{1}{v}(-\frac{v_\phi}{v} \hat{\rho} + \frac{v_\rho}{v} \hat{\phi}) * (-\frac{v^2}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{v^2}{v_\rho}\frac{\partial}{\partial v_\phi}) = (\frac{\partial}{\partial v_\rho} - \frac{v_\phi}{v_\rho}\frac{\partial}{\partial v_\phi})\hat{\rho} + (-\frac{v_\rho}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{\partial}{\partial v_\phi})\hat{\phi}$$

    Putting everything together:
    $$\frac{\partial}{\partial v_r} \hat{v_r} + \frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} + \frac{\partial}{\partial v_z} \hat{z} = (2\frac{\partial}{\partial v_\rho} + (\frac{v_\rho}{v_\phi} - \frac{v_\phi}{v_\rho})\frac{\partial}{\partial v_\phi})\hat{\rho} + (2\frac{\partial}{\partial v_\phi} + (\frac{v_\phi}{v_\rho} - \frac{v_\rho}{v_\phi})\frac{\partial}{\partial v_\rho})\hat{\phi} + \frac{\partial}{\partial v_z} \hat{z}$$

    However this does not look right.
    Shouldn't $$\nabla_v = \frac{\partial}{\partial v_\rho} \hat{\rho} + \frac{\partial}{\partial v_\phi} \hat{\phi} + \frac{\partial}{\partial v_z} \hat{z}$$ ?

    Have I made a mistake somewhere?
     
  2. jcsd
  3. Nov 19, 2017 #2

    Charles Link

    User Avatar
    Homework Helper
    Gold Member

    I don't think you can do what you are trying to do because ## f=f(\vec{r},\vec{v}, t) ##. The distribution function ## f ## is basically in a 6 dimensional space of ## \vec{r} ## and ## \vec{v} ##. ## \\ ## At each location ## \vec{r} ## there is a distribution of velocities. The distribution function ## f ## supplies information about how the particle velocities are distributed at this point. The velocity vectors are in a completely different space from the coordinate vectors.
     
  4. Nov 19, 2017 #3
    Ok, but then how does one evaluate $$\vec{a} \cdot \nabla_v$$ in the vlasov equation? The acceleration vector is in spatial coordinates I believe.
     
  5. Nov 19, 2017 #4

    Charles Link

    User Avatar
    Homework Helper
    Gold Member

    Acceleration ## \vec{a}=\vec{F}/m ## , and the vector ## \vec{F } ## is usually replaced by the electromagnetic force ## q(\vec{E}+\vec{v} \times \vec{B}) ##.
     
    Last edited: Nov 19, 2017
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted