Linear Algebra - Gram-Schmidt Process

Click For Summary
SUMMARY

The discussion focuses on applying the Gram-Schmidt process to transform the basis {u1, u2} into an orthonormal basis in R², where u1 = (1, -3) and u2 = (2, 2). The user initially miscalculated the normalization of the second vector v2, leading to confusion about the orthonormality of the resulting vectors. The correct normalization involves using the norm of v2 instead of u2, resulting in v2 = (3/√10, 1/√10). The final verification of orthonormality can be achieved by checking that the dot products of the vectors equal zero and that their norms equal one.

PREREQUISITES
  • Understanding of the Gram-Schmidt process for orthonormalization
  • Familiarity with Euclidean inner products
  • Knowledge of vector normalization techniques
  • Basic proficiency in linear algebra concepts
NEXT STEPS
  • Review the Gram-Schmidt process in detail, focusing on vector normalization
  • Practice calculating inner products and norms of vectors in R²
  • Explore MATLAB functions for vector operations and orthonormalization
  • Study examples of verifying orthonormal bases through dot products
USEFUL FOR

Students and educators in linear algebra, mathematicians working on vector spaces, and anyone seeking to master the Gram-Schmidt process for orthonormalization.

joe_cool2
Messages
23
Reaction score
0

Homework Statement


Let R2 have the Euclidean inner product and use the Gram-Schmidt process to transform the basis {u1,u2} into an orthonormal basis.

u1 = (1,-3)
u2 = (2,2)

Homework Equations



Gram-Schmidt process:

<br /> \\v_1 = u_1<br /> \\v_2= u_2 -<br /> <br /> \frac{\left ( \left \langle u_2, v_1\right \rangle \right )}{\left \|<br /> v_1<br /> <br /> \right \| ^ 2}v_1<br />

The Attempt at a Solution



We'll go ahead and find the norm of v first. Then we'll evaluate the second Gram-Schmidt equation.

<br /> \\\left \| v_1 \right \| = \sqrt{10} \\\\<br /> \left \| v_1 \right \|v_1 = u_1 = (1,-3)<br /> \\\\\left \| v_2 \right \|v_2= \begin{bmatrix}<br /> 2\\2<br /> <br /> \end{bmatrix} -<br /> <br /> \frac{\left ( \left \langle \begin{bmatrix}<br /> 2\\2<br /> <br /> \end{bmatrix} , \begin{bmatrix}<br /> \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}<br /> <br /> \end{bmatrix} \right \rangle \right )}{\left \| \begin{bmatrix}<br /> \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}<br /> <br /> \end{bmatrix} \right \| ^ 2}<br /> <br /> \begin{bmatrix}<br /> \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}<br /> <br /> \end{bmatrix}\\\\\left \| v_2 \right \|v_2= \begin{bmatrix}<br /> 2\\2<br /> <br /> \end{bmatrix} - \frac{\left ( \frac{-4}{\sqrt{10}} \right )}{1} \begin{bmatrix} \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}} \end{bmatrix}<br /> <br /> \\\\<br /> <br /> \begin{bmatrix}<br /> 2\\2<br /> <br /> \end{bmatrix}<br /> <br /> - \begin{bmatrix}<br /> \frac{-4}{10}\\\\\frac{12}{10}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> \frac{24}{10}\\\\\frac{8}{10}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> \frac{12}{5}\\\\\frac{4}{5}<br /> <br /> \end{bmatrix}<br />

I've not been able to get another answer for this step. Even checked in Matlab.

Now, we'll normalize the vector like the problem wants us to:
<br /> \\\left \| v_2 \right \| = \sqrt{8}<br /> \\<br /> v_2 = \begin{bmatrix}<br /> \frac{\frac{12}{5}}{\sqrt{8}}\\<br /> \frac{\frac{4}{5}}{\sqrt{8}}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{\frac{12}{5}}{\sqrt{8}}\\<br /> \frac{\frac{4}{5}}{\sqrt{8}}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{12}{10\sqrt{2}}\\\\<br /> \frac{4}{10\sqrt{2}}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{6}{5\sqrt{2}}\\\\<br /> \frac{2}{5\sqrt{2}}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{6\sqrt{2}}{10}\\\\<br /> \frac{2\sqrt{2}}{10}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{3\sqrt{2}}{5}\\\\<br /> \frac{\sqrt{2}}{5}<br /> <br /> \end{bmatrix}<br />

This is an odd problem, so I know that the solution should be v_2 = (\frac{3}{\sqrt{10}} , \frac{1}{\sqrt{10}}). There must be something wrong when I'm finding ||v_2||v_2 . Is there anything fundamentally wrong with my process?
 
Last edited:
Physics news on Phys.org
joe_cool2 said:

Homework Statement


Let R2 have the Euclidean inner product and use the Gram-Schmidt process to transform the basis {u1,u2} into an orthonormal basis.

u1 = (1,-3)
u2 = (2,2)

Homework Equations



Gram-Schmidt process:

<br /> \\v_1 = u_1<br /> \\v_2= u_2 -<br /> <br /> \frac{\left ( \left \langle u_2, v_1\right \rangle \right )}{\left \|<br /> v_1<br /> <br /> \right \| ^ 2}v_1<br />

The Attempt at a Solution



We'll go ahead and find the norm of v first. Then we'll evaluate the second Gram-Schmidt equation.

<br /> \\\left \| v_1 \right \| = \sqrt{10} \\\\<br /> \left \| v_1 \right \|v_1 = u_1 = (1,-3)<br /> \\\\\left \| v_2 \right \|v_2= \begin{bmatrix}<br /> 2\\2<br /> <br /> \end{bmatrix} -<br /> <br /> \frac{\left ( \left \langle \begin{bmatrix}<br /> 2\\2<br /> <br /> \end{bmatrix} , \begin{bmatrix}<br /> \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}<br /> <br /> \end{bmatrix} \right \rangle \right )}{\left \| \begin{bmatrix}<br /> \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}<br /> <br /> \end{bmatrix} \right \| ^ 2}<br /> <br /> \begin{bmatrix}<br /> \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}}<br /> <br /> \end{bmatrix}\\\\\left \| v_2 \right \|v_2= \begin{bmatrix}<br /> 2\\2<br /> <br /> \end{bmatrix} - \frac{\left ( \frac{-4}{\sqrt{10}} \right )}{1} \begin{bmatrix} \frac{1}{\sqrt{10}}\\ \frac{-3}{\sqrt{10}} \end{bmatrix}<br /> <br /> \\\\<br /> <br /> \begin{bmatrix}<br /> 2\\2<br /> <br /> \end{bmatrix}<br /> <br /> - \begin{bmatrix}<br /> \frac{-4}{10}\\\\\frac{12}{10}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> \frac{24}{10}\\\\\frac{8}{10}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> \frac{12}{5}\\\\\frac{4}{5}<br /> <br /> \end{bmatrix}<br />

I've not been able to get another answer for this step. Even checked in Matlab.
If you get rid of a common factor of 4/5, you have ##\vec{v}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}##.

Now, we'll normalize the vector like the problem wants us to:
<br /> \\\left \| v_2 \right \| = \sqrt{8}<br /> \\<br /> v_2 = \begin{bmatrix}<br /> \frac{\frac{12}{5}}{\sqrt{8}}\\<br /> \frac{\frac{4}{5}}{\sqrt{8}}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{\frac{12}{5}}{\sqrt{8}}\\<br /> \frac{\frac{4}{5}}{\sqrt{8}}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{12}{10\sqrt{2}}\\\\<br /> \frac{4}{10\sqrt{2}}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{6}{5\sqrt{2}}\\\\<br /> \frac{2}{5\sqrt{2}}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{6\sqrt{2}}{10}\\\\<br /> \frac{2\sqrt{2}}{10}<br /> <br /> \end{bmatrix}<br /> <br /> =<br /> <br /> \begin{bmatrix}<br /> <br /> \frac{3\sqrt{2}}{5}\\\\<br /> \frac{\sqrt{2}}{5}<br /> <br /> \end{bmatrix}<br />

This is an odd problem, so I know that the solution should be v_2 = (\frac{3}{\sqrt{10}} , \frac{1}{\sqrt{10}}). There must be something wrong when I'm finding ||v_2||v_2 . Is there anything fundamentally wrong with my process?
 
Ok. So I gather that my answer is not technically wrong? How can I verify that my original answer is in fact an orthonormal basis spanning the same subspace?

I guess if I make computational errors, it will be unlikely that all the dot products in some generated set of vectors is zero. Right?
 
Last edited:
Your answer is wrong. You didn't normalize the vector correctly.
 
Ah, I see that I accidentally used the norm of u2 instead of v2 to normalize v2. The book confused me by switching up u's and v's.

Checking to see if the norm of the final vectors is one would also be a useful trick.
 

Similar threads

Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
6
Views
1K