MHB Linear combination of sine and cosine function

Click For Summary
The discussion focuses on finding the minimum values of the function \(6\sin x + 8\cos x + 5\) and its subsequent transformations. The minimum of the original function is identified as \(-5\), leading to the minimum values of the derived functions: \((6\sin x + 8\cos x)^2 + 5\) is \(5\), \((6\sin x + 8\cos x)^3 + 5\) is \(-995\), and \((6\sin x + 8\cos x)^4 + 5\) is again \(5\). The discussion highlights the importance of correctly applying trigonometric identities to simplify the problem. Overall, the thread emphasizes the necessity of careful reasoning in mathematical problem-solving.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB! I recently came across a problem and I was thinking most likely I was missing something very obvious because I couldn't make sense of what was being asked, and I so wish to know what exactly that I failed to relate.

Question:
Find the minimum of $6\sin x+8\cos x+5$. Hence, find the minimum of $(6\sin x+8\cos x)^2+5,\,(6\sin x+8\cos x)^3+5$ and $(6\sin x+8\cos x)^4+5$.

It is important to stress that students are expected to solve it via trigonometry route but not other methods.

I would feel the "hence" implies that the first part of the question greatly help to reach to the answers for the subsequent parts of the problem, but not that I could see it...therefore, any insight would be helpful and thanks in advanced for the help!
 
Mathematics news on Phys.org
If f(x) has minimum m at x= x0 then f(x)+ 5 has minimum m+ 5 at x0, f(x)^2+ 5 has minimum m^2+ 5 at x= x0, and, generally, f(x)^n+ 5 has minimum m^n+ 5 at x= x-x0.
 
Country Boy said:
If f(x) has minimum m at x= x0 then[/color] f(x)+ 5 has minimum m+ 5 at x0, f(x)^2+ 5 has minimum m^2+ 5 at x= x0[/color], and, generally, f(x)^n+ 5 has minimum m^n+ 5 at x= x-x0.
That is not true. For example, the function $f(x) = \sin x$ has minimum $m = -1$ at $x_0 = \frac{3\pi}2$. But $f(x)^2 + 5$ does not have minimum $m^2+5 = 6$ at $x = x_0$. Instead, it has minimum $5$ at $x = 0$.
 
Argh!(Headbang) I couldn't believe how I overlooked something so trivially simple in order to deduce the minimum of the other functions! Once we rewrite $6\sin x+8\cos x+5=10\sin \left(x+\tan^{-1}\dfrac{4}{3}\right)+5$, we know the minimum can be attained at $-5$, and so the minimum values of

$(6\sin x+8\cos x)^2+5=\left(10\sin \left(x+\tan^{-1}\dfrac{4}{3}\right)\right)^2+5$ is $0+5=5$,

$(6\sin x+8\cos x)^3+5=\left(10\sin \left(x+\tan^{-1}\dfrac{4}{3}\right)\right)^3+5$ is $(-10)^3+5=-995$,

$(6\sin x+8\cos x)^4+5=\left(10\sin \left(x+\tan^{-1}\dfrac{4}{3}\right)\right)^4+5$ is $0+5=5$.

Sorry for asking something so simple!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
22
Views
3K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K