MHB Linear Map Input: Solving P'(1-x) | \pi\rangle

Petrus
Messages
702
Reaction score
0
Hello!
I have hard to understand this input for this linear map $$T:P_3(R)->P_2(R)$$
$$T(p(x))=P'(1-x)$$
so they get this value when they put in which I have hard understanding
vpyfll.png

I don't understand how they get those, I am totally missing something basic...!
The only logical explain is that in $$p'(x)=3x^2$$ where $$x=(1-x)$$ I don't get it.

Regards,
$$|\pi\rangle$$
 
Physics news on Phys.org
Petrus said:
Hello!
I have hard to understand this input for this linear map $$T:P_3(R)->P_2(R)$$
$$T(p(x))=P'(1-x)$$
so they get this value when they put in which I have hard understanding
vpyfll.png

I don't understand how they get those, I am totally missing something basic...!
The only logical explain is that in $$p'(x)=3x^2$$ where $$x=(1-x)$$ I don't get it.

Regards,
$$|\pi\rangle$$

Hey Petrus!

I suspect you have trouble with the substitution step.

Let's take the last one as an example.
I'm assuming that the step from $p(x)=x^3$ to $p'(x)=3x^2$ is clear.

The latter is equivalent to saying:
$$p'(u)=3u^2$$
That is, $p'$ is a function and if you apply it to $u$ you get $3u^2$.

Now, if we substitute $u=1-x$, we replace all $u$'s by $1-x$ and get:
$$p'(1-x)=3(1-x)^2$$
 
I like Serena said:
Hey Petrus!

I suspect you have trouble with the substitution step.

Let's take the last one as an example.
I'm assuming that the step from $p(x)=x^3$ to $p'(x)=3x^2$ is clear.

The latter is equivalent to saying:
$$p'(u)=3u^2$$
That is, $p'$ is a function and if you apply it to $u$ you get $3u^2$.

Now, if we substitute $u=1-x$, we replace all $u$'s by $1-x$ and get:
$$p'(1-x)=3(1-x)^2$$
Thanks a lot for the fast respond! I got it now! Have a nice day!:)

Regards,
$$|\pi\rangle$$
 
Although most people know the derivative from calculus, you don't need calculus to define the derivative of a polynomial.

Given a polynomial in $P_n(\Bbb R)$, say:

$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$

We define the derivative $p'(x)$ (I prefer to write this as $Dp$ for reasons we shall see later) as:

$Dp(x) = a_1 + 2a_2x + \cdots + na_nx^{n-1}$

If one uses the basis: $B = {1,x,x^2,\dots,x^n}$ for $P_n(\Bbb R^n)$ one can identify (such an identification is called a linear isomorphism) $P_n(\Bbb R)$ with $\Bbb R^n$ like so:

$a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \mapsto (a_0,a_1,a_2,\dots,a_n)$

In this basis (actually "two bases" but the basis for $P_{n-1}(\Bbb R)$ is "just like" the basis for $P_n(\Bbb R)$), $D$ has the nx(n+1) matrix:

$[D]_B = \begin{bmatrix}0&1&0&\cdots&0\\0&0&2&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&n \end{bmatrix}$

which makes it clear $D$ is a linear mapping.

We also have the linear mapping: $L: P_n(\Bbb R) \to P_n(\Bbb R)$ given by:

$L(p(x)) = p(a - x)$ for $a \in \Bbb R$.

It may be instructive to see the matrix of $L$ with respect to the basis $B$:

$[L]_B = \begin{bmatrix}1&a&a^2&\cdots&a^n\\0&-1&-2a&\cdots&-na^{n-1}\\0&0&1&\cdots&\frac{n(n-1)}{2}a^{n-2}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&(-1)^n \end{bmatrix}$

So the mapping you are given is just $L \circ D$ (with $a = 1$):

$(L \circ D)(p(x)) = L(D(p(x)) = L(p'(x)) = p'(1 - x)$.

For the case $n = 3$, we can see $D$ as having the 3x4 matrix:

$\begin{bmatrix}0&1&0&0\\0&0&2&0\\0&0&0&3 \end{bmatrix}$

and $L$ as being the 3x3 matrix (with $a = 1$):

$\begin{bmatrix}1&1&1\\0&-1&-2\\0&0&1\\ \end{bmatrix}$

Then multiplying these two matrices together, we get the 3x4 matrix:

$\begin{bmatrix}0&1&2&3\\0&0&-2&-6\\0&0&0&3 \end{bmatrix}$ which is the matrix for $T$ in the basis $B$.

Now the vector representing the constant polynomial $p(x) = 1$ in the basis $B$ is just: (1,0,0,0), while the vector representing $x$ is (0,1,0,0), the vector representing $x^2$ is (0,0,1,0), and the vector representing $x^3$ is (0,0,0,1). So applying the matrix of $T$ to these vectors, we get

$T(1) \to [T(1,0,0,0)]_B = [0,0,0]_B \to 0$
$T(x) \to [T(0,1,0,0)]_B = [1,0,0]_B \to 1$
$T(x^2) \to [T(0,0,1,0)]_B = [2,-2,0]_B \to 2-x = 2(1-x)$
$T(x^3) \to [T(0,0,0,1)]_B = [3,-6,3]_B \to 3 - 6x + 3x^2 = 3(1 - x^2)$

If, instead, your book had defined:

$T(p(x)) = (p(x))'$

we would have taken $D \circ L$, giving a different 3x4 matrix (using a 4x4 "L").

I find that the use of derivative notation in linear algebra problems involving polynomial spaces is sort of confusing, and obscures the underlying vector algebra: we just have some linear map $D$ on a vector space $V$, to understand what $D$ does, we need only examine what it does to a basis (and once having CHOSEN a basis, we can do everything in matrices relative to that basis).

Or, perhaps more simply put: everything you want to know about a polynomial vector space is given by the coefficients of the polynomials (the $x$ is just "excess baggage" in terms of the "vector-space-ness", although it does come into play when considering the RING structure of this vector space...but that is a topic beyond the scope of most linear algebra courses).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top