Linear Map Input: Solving P'(1-x) | \pi\rangle

Click For Summary
SUMMARY

The discussion focuses on the linear map \( T: P_3(\mathbb{R}) \to P_2(\mathbb{R}) \) defined by \( T(p(x)) = p'(1-x) \). Participants clarify the substitution step in deriving the output of the map, specifically how \( p'(x) = 3x^2 \) translates to \( p'(1-x) = 3(1-x)^2 \). The conversation emphasizes the importance of understanding polynomial derivatives and the linear mappings involved, particularly the derivative operator \( D \) and the linear mapping \( L \). The matrix representations of these mappings are also discussed, illustrating their application in polynomial spaces.

PREREQUISITES
  • Understanding of polynomial spaces \( P_n(\mathbb{R}) \)
  • Familiarity with polynomial differentiation
  • Knowledge of linear mappings and matrix representations
  • Basic concepts of vector spaces and bases
NEXT STEPS
  • Study polynomial differentiation techniques in \( P_n(\mathbb{R}) \)
  • Learn about linear mappings and their matrix representations
  • Explore the properties of the derivative operator \( D \) in linear algebra
  • Investigate the relationship between polynomial spaces and vector spaces
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in the application of linear maps in polynomial spaces will benefit from this discussion.

Petrus
Messages
702
Reaction score
0
Hello!
I have hard to understand this input for this linear map $$T:P_3(R)->P_2(R)$$
$$T(p(x))=P'(1-x)$$
so they get this value when they put in which I have hard understanding
vpyfll.png

I don't understand how they get those, I am totally missing something basic...!
The only logical explain is that in $$p'(x)=3x^2$$ where $$x=(1-x)$$ I don't get it.

Regards,
$$|\pi\rangle$$
 
Physics news on Phys.org
Petrus said:
Hello!
I have hard to understand this input for this linear map $$T:P_3(R)->P_2(R)$$
$$T(p(x))=P'(1-x)$$
so they get this value when they put in which I have hard understanding
vpyfll.png

I don't understand how they get those, I am totally missing something basic...!
The only logical explain is that in $$p'(x)=3x^2$$ where $$x=(1-x)$$ I don't get it.

Regards,
$$|\pi\rangle$$

Hey Petrus!

I suspect you have trouble with the substitution step.

Let's take the last one as an example.
I'm assuming that the step from $p(x)=x^3$ to $p'(x)=3x^2$ is clear.

The latter is equivalent to saying:
$$p'(u)=3u^2$$
That is, $p'$ is a function and if you apply it to $u$ you get $3u^2$.

Now, if we substitute $u=1-x$, we replace all $u$'s by $1-x$ and get:
$$p'(1-x)=3(1-x)^2$$
 
I like Serena said:
Hey Petrus!

I suspect you have trouble with the substitution step.

Let's take the last one as an example.
I'm assuming that the step from $p(x)=x^3$ to $p'(x)=3x^2$ is clear.

The latter is equivalent to saying:
$$p'(u)=3u^2$$
That is, $p'$ is a function and if you apply it to $u$ you get $3u^2$.

Now, if we substitute $u=1-x$, we replace all $u$'s by $1-x$ and get:
$$p'(1-x)=3(1-x)^2$$
Thanks a lot for the fast respond! I got it now! Have a nice day!:)

Regards,
$$|\pi\rangle$$
 
Although most people know the derivative from calculus, you don't need calculus to define the derivative of a polynomial.

Given a polynomial in $P_n(\Bbb R)$, say:

$p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$

We define the derivative $p'(x)$ (I prefer to write this as $Dp$ for reasons we shall see later) as:

$Dp(x) = a_1 + 2a_2x + \cdots + na_nx^{n-1}$

If one uses the basis: $B = {1,x,x^2,\dots,x^n}$ for $P_n(\Bbb R^n)$ one can identify (such an identification is called a linear isomorphism) $P_n(\Bbb R)$ with $\Bbb R^n$ like so:

$a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \mapsto (a_0,a_1,a_2,\dots,a_n)$

In this basis (actually "two bases" but the basis for $P_{n-1}(\Bbb R)$ is "just like" the basis for $P_n(\Bbb R)$), $D$ has the nx(n+1) matrix:

$[D]_B = \begin{bmatrix}0&1&0&\cdots&0\\0&0&2&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&n \end{bmatrix}$

which makes it clear $D$ is a linear mapping.

We also have the linear mapping: $L: P_n(\Bbb R) \to P_n(\Bbb R)$ given by:

$L(p(x)) = p(a - x)$ for $a \in \Bbb R$.

It may be instructive to see the matrix of $L$ with respect to the basis $B$:

$[L]_B = \begin{bmatrix}1&a&a^2&\cdots&a^n\\0&-1&-2a&\cdots&-na^{n-1}\\0&0&1&\cdots&\frac{n(n-1)}{2}a^{n-2}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&(-1)^n \end{bmatrix}$

So the mapping you are given is just $L \circ D$ (with $a = 1$):

$(L \circ D)(p(x)) = L(D(p(x)) = L(p'(x)) = p'(1 - x)$.

For the case $n = 3$, we can see $D$ as having the 3x4 matrix:

$\begin{bmatrix}0&1&0&0\\0&0&2&0\\0&0&0&3 \end{bmatrix}$

and $L$ as being the 3x3 matrix (with $a = 1$):

$\begin{bmatrix}1&1&1\\0&-1&-2\\0&0&1\\ \end{bmatrix}$

Then multiplying these two matrices together, we get the 3x4 matrix:

$\begin{bmatrix}0&1&2&3\\0&0&-2&-6\\0&0&0&3 \end{bmatrix}$ which is the matrix for $T$ in the basis $B$.

Now the vector representing the constant polynomial $p(x) = 1$ in the basis $B$ is just: (1,0,0,0), while the vector representing $x$ is (0,1,0,0), the vector representing $x^2$ is (0,0,1,0), and the vector representing $x^3$ is (0,0,0,1). So applying the matrix of $T$ to these vectors, we get

$T(1) \to [T(1,0,0,0)]_B = [0,0,0]_B \to 0$
$T(x) \to [T(0,1,0,0)]_B = [1,0,0]_B \to 1$
$T(x^2) \to [T(0,0,1,0)]_B = [2,-2,0]_B \to 2-x = 2(1-x)$
$T(x^3) \to [T(0,0,0,1)]_B = [3,-6,3]_B \to 3 - 6x + 3x^2 = 3(1 - x^2)$

If, instead, your book had defined:

$T(p(x)) = (p(x))'$

we would have taken $D \circ L$, giving a different 3x4 matrix (using a 4x4 "L").

I find that the use of derivative notation in linear algebra problems involving polynomial spaces is sort of confusing, and obscures the underlying vector algebra: we just have some linear map $D$ on a vector space $V$, to understand what $D$ does, we need only examine what it does to a basis (and once having CHOSEN a basis, we can do everything in matrices relative to that basis).

Or, perhaps more simply put: everything you want to know about a polynomial vector space is given by the coefficients of the polynomials (the $x$ is just "excess baggage" in terms of the "vector-space-ness", although it does come into play when considering the RING structure of this vector space...but that is a topic beyond the scope of most linear algebra courses).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
22
Views
4K
  • · Replies 3 ·
Replies
3
Views
986
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K