Linear non-exact differential equation made exact

Click For Summary
SUMMARY

The discussion focuses on solving the linear non-exact differential equation (y+1) dx + (4x - y) dy = 0 by transforming it into standard form. The user initially struggles to express the equation in the form dy/dx + P(x)y = Q(x) but successfully switches the roles of x and y, leading to the standard form dx/dy + [4/(y+1)] * x = y / (y+1). The integrating factor is determined as (y+1)^4, and the user ultimately arrives at the correct general solution, matching the book's answer after verifying their algebra.

PREREQUISITES
  • Understanding of linear differential equations
  • Familiarity with integrating factors
  • Knowledge of integration techniques, including integration by parts
  • Ability to manipulate differential equations into standard form
NEXT STEPS
  • Study the method of integrating factors in depth
  • Practice transforming non-exact differential equations into exact forms
  • Learn advanced integration techniques, specifically integration by parts
  • Explore applications of linear differential equations in real-world scenarios
USEFUL FOR

Students studying differential equations, particularly those seeking to understand the transition from non-exact to exact forms, as well as educators and tutors looking for effective teaching strategies in this area.

rsera
Messages
5
Reaction score
1

Homework Statement



Find the general solution:
(y+1) dx + (4x - y) dy = 0

Homework Equations



dy/dx + P(x)y = Q(x) (standard form)
e^(∫ P(x) dx) (integrating factor)

The Attempt at a Solution



This exercise is in the chapter on linear equations, making non-exact equations exact.

So I know I need to put it into the form:
dy/dx + P(x)y = Q(x)

So that I can find the Integrating Factor:
e^( ∫ P(x) dx)

Then multiply through by the Integrating Factor and solve the resulting exact equation.

My problem with this one has been getting it into that standard form.

If I divide by dx and rearrange, I get:

(4x - y) dy/dx + (y+1) = 0

Then divide by (4x - y)

dy/dx + (y + 1) / (4x - y) = 0

However, this does not match the standard form, because it is not a function of x times y.

I know what to do once it's in standard form, I'm just having troubles getting to that point. Any clue as to what trick to use to get it to standard form would be appreciated. Thanks!
 
Last edited:
Physics news on Phys.org
rsera said:

Homework Statement



Find the general solution:
(y+1) dx + (4x - y) dy = 0

Homework Equations



dy/dx + P(x)y = Q(x) (standard form)
e^(∫ P(x) dx) (integrating factor)

The Attempt at a Solution



This exercise is in the chapter on linear equations, making non-exact equations exact.

So I know I need to put it into the form:
dy/dx + P(x)y = Q(x)

So that I can find the Integrating Factor:
e^( ∫ P(x) dx)

Then multiply through by the Integrating Factor and solve the resulting exact equation.

My problem with this one has been getting it into that standard form.

If I divide by dx and rearrange, I get:

(4x - y) dy/dx + (y+1) = 0

Then divide by (4x - y)

dy/dx + (y + 1) / (4x - y) = 0

However, this does not match the standard form, because it is not a function of x times y.

I know what to do once it's in standard form, I'm just having troubles getting to that point. Any clue as to what trick to use to get it to standard form would be appreciated. Thanks!
Hello rsera. Welcome to PF !


How about if you switch the roles of x & y? In other words, treat y as the independent variable and consider x to be a function of y .
 
  • Like
Likes   Reactions: 1 person
Thank you for the welcome and the reply!

You know, I had thought about doing that after I posted, but wasn't sure if that was the right way to approach it.

So, if I switch them, I get the standard form as:
dx/dy + [4/(y+1)] * x = y / (y+1)

So my integrating factor is:
e^∫P(y) dy ; P(y) = 4 / (y+1)
e^ ∫4/(y+1) dy = e^ 4ln|y+1| = (y+1)^4

I can multiply through by (y+1)^4 and get:
(y+1)^4 * dx/dy + (y+1)^4 [4/(y+1)] * x = (y+1)^4 * (y / (y+1))

Which simplifies to:
(y+1)^4 * dx/dy + (y+1)^4 [4/(y+1)] * x = y(y+1)^3

And then integrate both sides to get:
(y+1)^4 * x = ∫y(y+1)^3 dy

Am I on the right track here? I tried integrating y(y+1)^3 using integration by parts, but I didn't get an answer that looked anything like the one in the book. If I'm correct up to here, can you suggest a better method for integrating it?
 
rsera said:
Thank you for the welcome and the reply!

You know, I had thought about doing that after I posted, but wasn't sure if that was the right way to approach it.

So, if I switch them, I get the standard form as:
dx/dy + [4/(y+1)] * x = y / (y+1)

So my integrating factor is:
e^∫P(y) dy ; P(y) = 4 / (y+1)
e^ ∫4/(y+1) dy = e^ 4ln|y+1| = (y+1)^4

I can multiply through by (y+1)^4 and get:
(y+1)^4 * dx/dy + (y+1)^4 [4/(y+1)] * x = (y+1)^4 * (y / (y+1))

Which simplifies to:
(y+1)^4 * dx/dy + (y+1)^4 [4/(y+1)] * x = y(y+1)^3

And then integrate both sides to get:
(y+1)^4 * x = ∫y(y+1)^3 dy

Am I on the right track here? I tried integrating y(y+1)^3 using integration by parts, but I didn't get an answer that looked anything like the one in the book. If I'm correct up to here, can you suggest a better method for integrating it?
That looks good.

What did you get for the integral?

What is the book's answer?
 
  • Like
Likes   Reactions: 1 person
The book has:
20x = 4y-1 + c(y+1)^-4

After working with it some more, I got:
20x = 5y-1 + c(y+1)^-4

For ∫y(y+1)^3 dy
I used u = y and dv = (y+1)^3; so, du = 1 dy and v = 1/4(y+1)^4
So I got:
∫u dv = y * 1/4 (y+1)^4 - 1/20 (y+1)^5 + c

Back to the DE, we have:
(y+1)^4 * x = (y)*(1/4)*(y+1)^4 - (1/20)*(y+1)^5 + c

I multiplied through by 20 to eliminate the fraction:
20*x*(y+1)^4 = 5*y*(y+1)^4 - (y+1)^5 + c

And factored out a (y+1)^4:
20*x*(y+1)^4 = (y+1)^4 (5y-1) +c

Finally, dividing by (y+1)^4 gives me:
20x = 5y-1 + c(y+1)^-4

So now my answer has a 5 where the answer in the book has a 4.

I really appreciate you looking over my work! It's nice to have someone to talk to about this. At my community college, the tutors don't go as high as DE, so getting help has been a real challenge.
 
rsera said:
The book has:
20x = 4y-1 + c(y+1)^-4

After working with it some more, I got:
20x = 5y-1 + c(y+1)^-4

For ∫y(y+1)^3 dy
I used u = y and dv = (y+1)^3; so, du = 1 dy and v = 1/4(y+1)^4
So I got:
∫u dv = y * 1/4 (y+1)^4 - 1/20 (y+1)^5 + c

Back to the DE, we have:
(y+1)^4 * x = (y)*(1/4)*(y+1)^4 - (1/20)*(y+1)^5 + c

I multiplied through by 20 to eliminate the fraction:
20*x*(y+1)^4 = 5*y*(y+1)^4 - (y+1)^5 + c

And factored out a (y+1)^4:
20*x*(y+1)^4 = (y+1)^4 (5y-1) +c
Check the algebra in that last step.
I get

20x(y+1)4 = (y+1)4 (5y - (y+1)) + c

Finally, dividing by (y+1)^4 gives me:
20x = 5y-1 + c(y+1)^-4

So now my answer has a 5 where the answer in the book has a 4.

I really appreciate you looking over my work! It's nice to have someone to talk to about this. At my community college, the tutors don't go as high as DE, so getting help has been a real challenge.
 
  • Like
Likes   Reactions: 1 person
Yes! I fixed that and now my answer matches theirs! Thank you so much!
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
Replies
19
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K